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Abstract— Sign language recognition is a fundamental tech-
nique to improve communication between native signers and
speakers. Current state-of-the-art sign language recognition
methods often apply deep neural network models to learn an op-
timized projection between sign language videos and sentences
in an end-to-end manner. Generally, minibatch training using
sequential data requires the addition of padding to equalize the
varying lengths of sequences. However, this training strategy
induces performance degradation if batch normalization is
used in the models because batch normalization assumes the
validity of all inputs. In this study, we propose masked batch
normalization, which normalizes input features while masking
dummy signals. We apply masked batch normalization to
tracking-based sign language recognition models using graph
convolutional networks. The performance of the proposed
method is evaluated in isolated sign language word recognition
and continuous sign language words recognition settings. To
evaluate the proposed method, we use two types of sign language
video datasets, WLASL including 2000 types of isolated words,
and a JSL dataset including 275 types of videos of isolated
words and 113 types of videos showing sentences. The eval-
uation results show that the proposed method improves the
tracking-based sign language recognition models in both cases.

I. INTRODUCTION

Sign language recognition, which estimates words repre-
sented by sign motions, is an important technique for im-
proving communication between native signers and speakers.
As a result of continuous research efforts over three decades
on vision-based sign language recognition, continuous sign
language words recognition methods based on deep neural
networks (DNNs) have been proposed in recent years [1],
[2], [3], [4].

However, sign language recognition commonly encoun-
ters issues in handling variable-length sequences. Although
models can process variable-length sequences, they require
minibatch sequences of a fixed length in training. Moreover,
several types of the sequence to sequence (seq2seq) models,
such as Transformer, assume fixed-length sequences as in-
puts. Padding techniques appending dummy signals to equal-
ize the length of sequences are commonly used to handle
this situation. However, if a model includes normalization
layers using statistical values such as batch normalization
(BN) layers [5], the addition of dummy signals will degrade
its recognition performance.

BN is a standard DNN technique used in a wide variety
of tasks, including sign language recognition. However, BN
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assumes the validity of all inputs, and the dummy signals
associated with padding are not considered. The effect of
such dummy signals on BN and the necessity of masking
them have been discussed in software communities1, but the
effects of such methods on model performance have not as
yet been evaluated.

Based on the above background, we propose masked batch
normalization (MBN) to extend BN by masking the dummy
signals. Training convolutional neural network (CNN)-based
models using video frames requires considerable computa-
tional resources, and in some cases, it is sometimes infeasible
owing to the complex pre-training processes required. There-
fore, we apply MBN to tracking-based sign language recog-
nition models using graph convolution networks (GCN).
GCN is a generalization of CNN to a graph structure, and
it has attracted attention in tracking-based action recognition
owing to its high recognition performance. Most types of
GCN include BN layer in those blocks, and thus, they
are suitable for applying the proposed method. Moreover,
training the tracking-based models is notably lightweight
compared to that of the CNN-based models because they use
tracking points instead of video frames. As a result, they can
be trained from scratch with consumer graphic processing
units.

Sign language recognition includes isolated sign language
word recognition and continuous sign language words recog-
nition tasks. We employ spatial-temporal graph convolution
network (STGCN) [6] and sign language graph convolution
network (SLGCN) [7] as base models for the isolated sign
language word recognition. STGCN is the first application
of GCN to tracking-based action recognition, and it has been
the basis for subsequent methods. SLGCN is an extension
of STGCN, including decoupling GCN (DGCN) with Drop
Graph [8] and STC Attention modules [9], and it achieves
the state-of-the-art performance for isolated sign language
word recognition in recent years. Furthermore, we extend
them for the continuous sign language words recognition by
combining them with Transformer [10] similar to [4]. We
apply MBN to these four types of GCN-based models and
investigate performance improvement.

The proposed method was evaluated using WLASL [11],
which includes 2000 types of isolated sign language word,
and a Japanese sign language (JSL) dataset [4] including
275 and 113 types of videos showing isolated words and

1https://yangkky.github.io/2020/03/16/masked-batch-norm.html
https://discuss.pytorch.org/t/masked-batch-normalization/57813978-1-6654-3176-7/21/$31.00 ©2021 IEEE
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sentences. Our experimental results indicate that MBN can
improve on GCN-based models by a significant margin.

In the following sections, we refer to “isolated sign
language word” and “continuous sign language words” as
“isolated word” and “continuous words”, respectively, for
simplicity.

II. RELATED WORK

Methods combining framewise feature extraction and tem-
poral recognition are among the standard approaches in sign
language recognition. Early methods employed statistical
temporal recognition, such as Hidden Markov Models, and
combined them with handcrafted features [12], [13], [14]. In
recent years, DNNs have replaced these technical elements.

At present, the most standard DNN-based feature extrac-
tion methods apply CNN directly to video frames [1], [2],
[3]. This approach often employs pre-trained CNN blocks
[15], [16], [17] as feature extractors. Tracking-based ap-
proaches have also been developed utilizing tracking points
extracted from videos, and both CNN and GCN have been
employed in these methods [4], [18], [11], [7]. Normalization
layers such as BN are often applied in addition to these
convolution layers, but as yet existing methods have not
addressed their impacts on performance in combination with
dummy signals.

Recurrent neural networks with attention mechanisms [19]
and Transformer [10] are commonly employed to perform
temporal recognition [1], [3], [4], [18], [20]. The Transformer
model includes layer normalization [21] in the blocks. Al-
though layer normalization is expected to be affected by the
presence of dummy signals similarly to BN, this influence
varies depending on the specific implementation2. Therefore,
we focus on feature extraction using BN in this study.

III. MASKED BATCH NORMALIZATION

BN is a standard DNN technique which normalizes inputs
using statistics of minibatch data. BN is commonly applied to
stabilize the training processes of DNN models and improve
their performance.

Let xncf and x̂ncf be features before and after normal-
ization, respectively. Then, we denote by n ∈ [1, N ] and
c ∈ [1, C] indices along batch and channel axes, respectively,
while f ∈ F denotes an index of a feature map. The
two-dimensional feature map f = (t, j); t ∈ [1, T ], j ∈
[1, J ],F = [1, T ]× [1, J ] is used in the GCN layers. t and j
are indices of the frames and joints, respectively. The one-
dimensional feature map f = t,F = [1, T ] is used in other
layers.

Using this notation, the normalization is defined as fol-
lows.

x̂ncf = γc
xncf − µc√

σ2
c + ϵ

+ βc, (1)

2In our observations, some DNN frameworks, such as Tensorflow and
PyTorch, implement layer normalization as positional normalization with
their default settings, which does not propagate the effect of dummy signals
to other positions.

Fig. 1: Batch Normalization, including dummy signals.

where γc and βc are the trainable parameters and ϵ is a fixed
value to stabilize the calculation; we use ϵ = 1.0 × 10−5.
µc and σc denote batch mean and variance, respectively.
The batch-mean and batch-variance are calculated for each
channel and are defined as follows.

µc =
1

N |F |
∑
n,f

xncf , (2)

σ2
c =

1

N |F |
∑
n,f

(xncf − µc)
2. (3)

Fig. 1 shows normalization for channel c. Each voxel
indicates an element of a batch xncf . The elements drawn by
light blue voxels are used to calculate µc and σ2

c , and these
statistics normalize the elements. The gray voxels indicate
dummy signals generated by padding. As shown in Fig. 1,
the standard BN includes these dummy signals in calculating
statistics.

In contrast, MBN utilizes a mask mnf ∈ {0, 1} to
calculate these statistics. mnf = 1 and mnf = 0 indicate
that xncf is a valid feature or a dummy signal, respectively.
In MBN, the batch-mean and batch-variance are calculated
as follows.

µc =
1∑

n,f mnf

∑
n,f

xncfmnf , (4)

σ2
c =

1∑
n,f mnf

∑
n,f

(xncfmnf − µc)
2. (5)

The calculation performed by MBN is simple, and it can be
implemented by adding the specified mask generation and
multiplication operation to the standard BN.

IV. GCN-BASED SIGN LANGUAGE RECOGNITION

This section describes sign language recognition models
in this research. Let X = {x1, . . . ,xt, . . . ,xT }, where
xt ∈ R54 and Y = {y1, . . . , ys, . . . , yS}, where ys ∈
{<start >,<end >,<pad >,L} be input feature and word
sequences, respectively. xt indicates the coordinates of the
tracking points in the tth frame. We employ OpenPose [22]
for human body-part tracking and use 27 tracking points rep-
resenting a person’s nose, eyes, shoulders, arms, and hands
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SGCN:
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TGCN:

2D-MBN

ReLU

(a) STGCN block.

DGCN:

2D-MBN

ReLU

TGCN:

2D-MBN

Drop Graph

STC Attention

ReLU

(b) SLGCN block.

1D-MBN

GCN:

MGPool

Linear

(c) Isolated word recogni-
tion model.

...

1D-MBN

GCN:

: 64

1D-MBN

Positional

Encoding

Self Attention : 64

Feed Forward : 256

<start> [Nyuuseki]

[Kibou] <end> <pad> ...

Word Embedding : 64

Positional

Encoding

Attention: 64

Masked Self-Attention: 256

Feed Forward : 256

Linear

Encoder Decoder

ReLU

(d) Continuous words recognition model.

Fig. 2: Illustration of recognition models. MBN and MGPool modules are colored in green. The encoder and decoder of the
continuous words recognition model are colored in blue and red, respectively. Rectangles and rounded rectangles indicate
layers and data, respectively. The vocabulary determines the dimension of the final Linear layer in (c) and (d).

as input. Hands include metacarpophalangeal joints of index,
middle, ring, and pinky fingers, and all fingertips. L denotes
a set of words to be recognized. <start > and <end > are
keywords indicating the start and end of a word sequence,
respectively. <pad > is a keyword for padding. Isolated and
continuous words recognition models optimize projection
X → L and X → Y through learning, respectively.

Fig. 2 shows the model structure. Fig. 2 (a) and (b) il-
lustrate STGCN [6] and SLGCN [7] modules, respectively.
The residual connections are omitted in Fig. 2 (a) and (b)
for simplicity. We employ a spatiotemporal graph connect-
ing tracking points in each frame with spatial edges. The
spatial edges follow the graph definition in [7]. The spatial
graph convolution (SGCN) and DGCN layers apply their
GCN operation according to the spatial edges. Similarly,
the spatiotemporal graph connects the same tracking points
between frames with the temporal edges. The temporal
graph convolution (TGCN) applies temporal CNN operation
according to the temporal edges. We replace the BN layers
of these modules with MBN layers in this research. We note
that the DGCN layer of Fig. 2 (b) includes one MBN layer.

Fig. 2 (c) shows the isolated word recognition model. M
indicates the mask for MBN. First, the model normalizes the
coordinates using the temporal MBN. Next, four cascaded
GCN layers apply graph convolution to the intermediate fea-
tures. After that, a masked global average pooling (MGPool)
is applied. MGPool summarizes sequential features into a
64-dimensional vector while masking padding signals. The
computation of MGPool is the same as Eq.(4). Finally, a
linear transformation layer is applied to obtain responses to
each word.

Fig. 2 (d) shows the continuous words recognition model.
A linear transformation layer and temporal MBN are applied
after the GCN layers to compress the intermediate features.

Time
Short pause Arm up [Nyuuseki] Arm down Short pause

(a) Isolated word “Nyuuseki.”

Time
Short pause Arm up [Kibou] Arm down Short pause

(b) Isolated word “Kibou.”

Time
Short pause Arm up [Nyuuseki] Arm down Short pause[Kibou]Transition

(c) Sentence “I’d like to register our marriage.”

Fig. 3: Examples of JSL videos.

TABLE I: Summy of the dataset.

Subset types Training Test
# of signers 35 2
# of isolated words 22640 (275) 3862 (210)
# of sentences 7466 (120) 1372 (105)

Subsequent processes are the same as those of the conven-
tional method [4].

V. EVALUATION

A. Dataset

We used two kinds of sign language video datasets to eval-
uate the proposed method. WLASL is a large-scale American
sign language (ASL) words video dataset for isolated word
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TABLE II: Recognition performance.

WLASL100 WLASL300 WLASL1000 WLASL2000 JSL
Models BN MBN BN MBN BN MBN BN MBN BN MBN

STGCN 51.55 48.84 ↑2.71 63.92 61.15 ↑ 2.77 71.35 69.96 ↑ 1.39 79.81 78.68↑1.13 N/A N/A
SLGCN 47.29 40.31 ↑6.98 63.10 51.50 ↑11.60 72.57 62.29 ↑10.29 78.14 73.04↑5.11 N/A N/A
STGCN-Transformer 42.25 42.44 ↓0.19 50.67 51.87 ↓ 1.20 63.35 61.86 ↑ 1.49 71.89 73.00↓1.11 11.32 9.39↑1.93

SLGCN-Transformer 35.85 34.69↑1.16 44.99 42.74↑ 2.25 59.43 55.06↑ 4.37 66.68 67.25↓0.57 8.11 8.11 0.00

recognition [11]. WLASL includes 2,000 common ASL
words, and it contains four sub-dataset depending on the
number of words. We report the performance for each sub-
dataset in this paper.

Another dataset is a JSL video dataset, including both
isolated and continuous words [4]. The signers included
37 adults with experience in Japanese sign language. The
dataset included 275 types of isolated word videos and 120
types of sentence videos. The vocabulary was conversational,
reflecting topics that are spoken in a common city office. The
videos were recorded at 30 frames per second with 640×360
pixels.

Fig. 3 shows examples of sign language videos. Fig. 3 (a)
and (b) show examples of isolated word videos expressing
“Nyuuseki” and “Kibou”, respectively. “Nyuuseki” and “Ki-
bou” mean “registration of marriage” and “hope”, respec-
tively. Fig. 3 (c) is an example of a sentence video. The
sentence consists of “Nyuuseki” and “Kibou”, which means
“I’d like to register our marriage.” “Arm up” and “Arm down”
are transition motions between “Short pause” and word
motions. “Transition” indicates a transitional motion between
word motions. These marginal motions do not convey lexical
meaning. Therefore, they were not included in the target
words L.

Fig. 3 shows that the signers posed in a static posture at
the beginning and the end of a sign. The frames between
these static postures are defined as a single action instance.

Table I shows a summary of the JSL dataset. We note that
horizontally flipped tracking sequences were added to avoid
effects related to signers’ dominant hands. The number of
action types is shown in parentheses. The sentences consisted
of 200 types of words, and 42 types of words were only
included in the sentences. Therefore, the total vocabulary
of the dataset comprised 320 words, including <start >,
<end >, and <pad >. We selected two signers for the test
because the dataset included a bias in the number of videos
for each signer. The largest number of videos were recorded
for these two test signers.

Owing to the limitation of batch training, the input feature
sequences are required to have a fixed length both during
training and testing. Similarly, the input word sequences are
also required to have a fixed length during training. Let Tmax

and Smax be the maximum lengths of the input feature and
word sequences in the dataset, respectively. If the length
of an input feature sequence is T < Tmax, 0 ∈ R54 is
inserted after xT . Similarly, if the length of a sequence is
S < Smax, < pad > is inserted after yS . The maximum
numbers of frames were 247 and 578 for WLASL and JSL

datasets, respectively. Therefore, we applied padding with
Tmax = 247 and Tmax = 578 to the input feature sequences
of WLASL and JSL datasets, respectively. Similarly, the
output word sequences of the JSL dataset were padded with
Smax = 13, including <start > and <end >, because the
maximum number of words was 11 for the dataset.

B. Recognition performance

The training settings are described as follows. The batch
size was 32 in all training procedures performed. The learn-
ing rate is set as 0.0003, and the adaptive moment estimation
[23] was applied to update the parameters. A categorical
cross-entropy was used for loss function. 150 training epochs
were used for all training procedures.

The best word error rates achieved during the training
processes are shown in Table II. The superscripts indicate
the performance improvement and depreciation. As shown
in Table II, the model with MBN improve the performance
in many cases. SLGCN with Transformer achieves the best
performance in the isolated and continuous word recognition
tasks. These results show the effectiveness of the proposed
method and model design.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we have proposed masked batch normaliza-
tion, which extends batch normalization to include masking
of dummy signals. We applied masked batch normaliza-
tion to GCN-based sign language recognition models. The
experimental results using the two types of sign language
video datasets designed for the isolated and continuous words
recognition tasks described above show that the proposed
method improves recognition models in many cases.

Although the combination with Transformer improves the
performance, it tends to weaken the effectiveness of MBN.
The current simple training pipeline might destabilize the
complex model. We expect that generalization techniques
may improve the model stability.

Batch normalization is among the standard techniques
used in DNNs and has been adopted in many models. Al-
though we focus on the padding of sequences in the present
work, dummy signals are also generated by image data
augmentation. We believe that masked batch normalization
can improve many types of vision models incorporating the
standard batch normalization.

We expect that the effect of dummy signals on normaliza-
tion is also common in other derivative methods [21], [24],
[25], [26], [27]. We plan to apply masked normalization to
such derivative methods in the future.
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