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Abstract—Recent works have shown promising results applied
to real-time semantic segmentation tasks. To maintain fast
inference speed, most of the existing networks make use of light
decoders, or they simply do not use them at all. This strategy
helps to maintain a fast inference speed; however, their accuracy
performance is significantly lower in comparison to non-real-
time semantic segmentation networks. In this paper, we introduce
two key modules aimed to design a high-performance decoder
for real-time semantic segmentation for reducing the accuracy
gap between real-time and non-real-time segmentation networks.
Our first module, Dilated Asymmetric Pyramidal Fusion (DAPF),
is designed to substantially increase the receptive field on the
top of the last stage of the encoder, obtaining richer contextual
features. Our second module, Multi-resolution Dilated Asym-
metric (MDA) module, fuses and refines detail and contextual
information from multi-scale feature maps coming from early and
deeper stages of the network. Both modules exploit contextual
information without excessively increasing the computational
complexity by using asymmetric convolutions. Our proposed
network entitled “FASSD-Net” reaches 78.8% of mIoU accuracy
on the Cityscapes validation dataset at 41.1 FPS on full resolution
images (1024×2048). Besides, with a light version of our network,
we reach 74.1% of mIoU at 133.1 FPS (full resolution) on a
single NVIDIA GTX 1080Ti card with no additional acceleration
techniques. The source code and pre-trained models are available
at github.com/GibranBenitez/FASSD-Net.

I. INTRODUCTION

The research of semantic segmentation is considered as a
fundamental task in computer vision [1]–[3]. It aims to assign
semantic class labels to each pixel in a given input image.
In recent years, due to the development of new deep learning
techniques, semantic segmentation has been widely applied
to several challenging fields, including: autonomous driving,
robot sensing, medical imaging, augmented reality, and video
surveillance, to name a few [4].

Some applications require the inference speed to be as fast
as possible with the maximum possible accuracy. Furthermore,
according to the available hardware or budget, factors such
as low energy consumption and memory usage also become
crucial [5]. In particular, applications such as autonomous
driving cars require to keep a balance between high accuracy
prediction and low inference time to be able to take action
rapidly [3], [6]. However, that speed and accuracy are two

Fig. 1. Speed and Accuracy comparison between state-of-the-art methods for
real-time semantic segmentation on the Cityscapes validation set. For a fair
comparison, the speed of methods marked by (*) are approximated without
TensorRT acceleration. PSPNet and FC-HarDNet-L2 speeds are placed on the
x-axis edges for the sake of better visualization.

factors that seemingly contradict each other, making real-time
semantic segmentation a challenging task [2].

In order to increase the accuracy performance, some state-
of-the-art networks for real-time semantic segmentation [6]–
[8] use U-shape-like architectures [9] to recover hierarchical
features from previous stages of the network. Nevertheless,
their accuracy performance is still significantly lower in com-
parison to non-real-time semantic segmentation networks.

In either encoder or decoder stages of the network, one
common way to achieve a further increment in accuracy is
leveraging the use of dilated (atrous) convolutions, which
enlarge the receptive field of the convolution kernel [10]. The
problem is, that methods designed to exploit this property
require a considerable number of floating-point operations,
such as the Atrous Spatial Pyramid Pooling module (ASPP)
[11]. On top of that, the ASPP module heavily relies on dilated
convolutions, which by themselves are slow to compute due
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to framework optimization constrains [8].
The slow-down caused by the use of dilated convolutions

can be alleviated by implementing convolution factorization,
as demonstrated in [5]. Therefore, in this paper, we introduce
two modules designed to increase the prediction accuracy,
exploiting contextual information in multiple stages of the
network. We name these two modules: Dilated Asymmetric
Pyramidal Fusion (DAPF) and Multi-resolution Dilated Asym-
metric (MDA) module, respectively.

In order to increase the kernel receptive field and keep low
computational complexity, we carefully employ 3×3 dilated
convolutions factorized into two consecutive 1D dilated convo-
lutions. From hereafter, we refer to this type of convolutions as
dilated asymmetric convolutions, due to the asymmetric nature
of the convolution kernel and the dilation implementation.

Our DAPF module is designed to significantly increase
the receptive field of the last stage of the encoder network,
obtaining richer contextual features. We follow a pyramidal
scheme similar to the DeepLabV3+’s ASPP module [11],
but all 3×3 dilated convolutions are replaced with dilated
asymmetric convolutions. Our design, allows the number of
pyramidal feature maps of DAPF to vary according to the
number of input feature maps, which further reduces the
computational complexity of the module.

Similarly, our MDA module, fuses multi-resolution feature
maps coming from previous encoder and decoder levels of the
network. In this module, feature maps are processed simultane-
ously by two parallel branches: the asymmetric branch and the
non-asymmetric branch. The asymmetric convolutional branch
exploits the contextual information of the input feature maps,
whereas the non-asymmetric branch focuses on recovering
details. This design allows a simultaneous refinement of detail
and contextual information in multiple stages of the decoder.

Our proposed network, entitled FASSD-Net, combines the
DAPF and MDA modules and effectively increases the seman-
tic segmentation accuracy with a relatively low computational
cost. Additionally, we present two light variations that provide
a balanced trade-off between accuracy and inference speed,
namely, FASSD-Net-L1 and FASSD-Net-L2.

Overall, our proposed networks bridge the accuracy gap
between existing real-time (around 70% mIoU) [2], [5], [6],
[8], [12]–[14] and non-real-time networks (about 80% mIoU)
for semantic segmentation [1], [11], [15]–[20]. This new gap
is illustrated in Figure 1.

Our main contributions are summarized as follows:
• We introduce DAPF, an efficient plug-in-and-play spatial

pyramidal fusion module inspired by ASPP [11]. DAPF
demands far less computational complexity, which en-
ables its use for real-time applications.

• We introduce the MDA module, which allows better
learning from two different stages of the network, simul-
taneously refining spatial and contextual information.

• As shown in Figure 1, our proposed networks obtain
state-of-the-art mIoU results on the Cityscapes valida-
tion set for the task of real-time semantic segmentation.
Furthermore, FASSD-Net is comparable to non-real-time

methods such as DeepLabV3+ [11] and PSPNet [15] in
terms of accuracy, while being about 40× faster.

II. RELATED WORK

Models such as PSPNet [15] and DeepLabV3+ [11] exploit
contextual information by processing the same set of feature
maps. PSPNet [15] does it by downsampling the feature
maps at four different rates, perform a series of convolutions
on them, and finally perform a fusion process. Likewise,
DeepLabV3+ [11] processes the feature maps by applying
atrous convolutions at different rates. These models have
achieved top results on several segmentation benchmarks by
leveraging the use of multi-scale information in a pyramidal
fashion. However, even in modern GPUs, the required compu-
tational resources for these methods are prohibited [13]. Thus,
making them unfeasible for real-time applications. In contrast,
our proposed FASSD-Net handles the same pyramidal strat-
egy used in DeepLabV3+ [11] but using dilated asymmetric
convolutions, allowing its use in real-time applications.

In addition, fusion strategies for multi-resolution feature
maps have been used in recent works such as HarDNet
[7], SwiftNet [8] and FasterSeg [12]. These networks either
concatenate or add two sets of feature maps and further
process them with a single convolution. This straightforward
fusion strategy requires a small amount of computation, but
do not exploit contextual information. In contrast, our MDA
module concatenates two sets of feature maps, and it processes
them by using two parallel branches, simultaneously refining
features rich in detail information and features rich in context.

On the other hand, techniques for reducing the computa-
tional complexity of the networks such as depth-wise sepa-
rable convolutions [21]–[25], zoomed convolutions [12], or
convolution factorization [5], [13], [14] have been proposed
and applied to the task of real-time semantic segmentation.
Networks that employ these techniques such as Fast-SCNN
[25], ERFNet [13], and FasterSeg [12] achieve real-time
performance, usually at the cost of significantly lower accuracy
compared to non-real-time methods. Similarly, our three net-
work proposals rely on factorized (asymmetric) convolutions
used in the DAPF and MDA modules. However, as shown in
Figure 1, our proposed networks outperform Fast-SCNN [25],
ERFNet [13] and FasterSeg [12] in terms of accuracy, keeping
comparable speed performance.

Additional methods for accelerating neural networks include
filtering or channel pruning, network distillation, Network
Architecture Search (NAS), and Neural Network Quantization
[12], [26]–[29]. Such methods, mainly reduce the number of
parameters and weight of the model, boosting the inference
speed. However, most of them, either utilize sophisticated
methodologies, require a considerable amount of memory,
or cannot be directly applied to more elaborated network
architectures [30], [31]. Specifically, FasterSeg [12] and CAS
[28] obtain state-of-the-art inference speed by utilizing NAS
techniques. By comparison, our proposed models are designed
manually and still, outperform these NAS networks in accu-
racy and speed performance.
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Networks such as ESPNetv2 [32], ESNet [32], and LEDNet
[33] employ lightweight pyramidal multi-resolution strategies
similar to our DAPF module. More specifically, LEDNet [33]
and ESNet [14] incorporate asymmetric convolutions in their
core modules. However, they heavily rely on the use of this
technique, which hurts the inference speed performance in
comparison to highly optimized standard convolutions [8].
Contrary to these methods, our DAPF and MDA modules
utilize asymmetric convolutions only if dilation is applied
concurrently, alleviating the reduction of inference speed
performance caused by the atrous convolutions [5]. When
compared to our proposals, LEDNet [33] and ESNet [14] are
slower and much less accurate.

III. METHODOLOGY

Most of the existing state-of-the-art methods for semantic
segmentation are built on top of high-performance baselines
for image classification such as ResNet, WiderResNet, or
Xception [1], [11], [16]–[18]. Following this trend, we adopt
and extend the work of Chao et al. [7] by incorporating the
DAPF and the MDA modules. The proposed network structure
is shown in Figure 2. In the figure, the stem convolution
block consists of four consecutive convolution layers. The core
element of all encoder and decoder blocks is the HarDBlock
(Harmonic Dense Block), proposed in HarDNet [7]. Our pro-
posed DAPF is placed at the end of the encoder, while MDA
modules connect each decoder block with its corresponding
encoder, in a U-shape fashion. Finally, the last block of the
network consists of a single 1× 1 convolution for making the
final prediction. Bilinear upsampling is used to reestablish the
original input size (1024 × 2048).

A. Network overview

HarDNet (Harmonic DenseNet) [7], is a recent state-of-
the-art network inspired by DenseNet (Densely Connected
Network) [34]. Compared to ResNet [35] and DenseNet [34],
HarDNet achieves comparable accuracy with significantly
lower GPU runtime for classification tasks. Its core compo-
nent, the HarDBlock (Harmonic Dense Block), is specifically
designed to address the problem of the GPU memory traffic.
The HarDBlock follows a concatenation scheme aimed to
improve the throughput of the feature maps in the network,
avoiding unnecessary DRAM (dynamic random-access mem-
ory) accesses. Additionally, the HarDBlock is optimized to
increase the density of computations of the layers, defined
by the number of Multiply-Accumulate operations (MACs)
over the Convolutional Input/Output (CIO). These key im-
provements are based on the observation that when the density
of computation is low, DRAM traffic can influence inference
time more substantially than the model size and the number
of operations.

Our baseline model, FC-HarDNet-70, is the implemen-
tation of HarDNet for the task of semantic segmentation.
FC-HarDNet-70 is a U-shape-like architecture [9] with five
encoder blocks and four decoder blocks (all of them HarD-
Blocks). The convolution layers in the last encoder stage of

FC-HarDNet process a high number of feature maps with
1/64 input size resolution, which is essential for classification
tasks. However, we believe that this is not always the case for
semantic segmentation tasks, where such small size feature
maps lose track of small objects present in the scene (e.g.,
for a 1024×2048 image and a downsampling rate of 64, the
size becomes 16×32). In our FASSD-Net implementation, the
last encoder block and the first decoder block of FC-HarDNet-
70 are replaced with our DAPF module, so that the smallest
feature maps processed by our network are 1/32 of the input
size resolution. Similarly, the FC-HarDNet-70 multi-resolution
fusion scheme is substituted by our MDA module.

B. Dilated Asymmetric Pyramidal Fusion module

As shown in Figure 3, the ASPP module heavily re-
lies on standard atrous convolutions and produces a fixed
number of feature maps Q in each of its five pyramidal
branches. Pyramidal branches consist of: 1× Conv 1×1, 1×
Pooling + Conv 1×1, and 3× atrous Conv 3×3 with dilation
rates r = 12, 24, and 36, respectively.

Our proposed DAPF module draws inspiration from the
ASPP module, but with some key differences aimed to reduce
its computational burden: Firstly, all 3×3 atrous convolutions
are factorized into two consecutive 1D atrous convolutions,
specifically, a 3×1 convolution followed by a 1×3 convolu-
tion. Secondly, the image pooling branch is removed since it
computes feature maps that might as well be learned through
the 1×1 convolutional branch. Lastly, the number of feature
maps generated by each pyramidal branch, is no longer fixed.
Instead, it is defined by the number of input feature maps of the
module K × 1

α , where α serves as the compression factor. In
our implementation, we set α = 2. However, α can be adjusted
to any other value according to the available computational
budget. Figure 3 illustrates the differences between DAPF and
the ASPP modules.

Undoubtedly, the major contributing factor for reducing
the computational burden in our DAPF module is the use
of asymmetric convolutions. For instance, in the pyramidal
branches, for each standard 2D convolution, we would have
to perform K × d × d × F operations, where K is the
number of input channels (feature maps), d is the kernel
size, and F is the number of output channels. On the other
hand, following our asymmetric strategy with α = 2, we
perform (K × d × 1

2K) + ( 1
2K × d × 1

2K) operations. For
a 3×3 kernel, this factorization strategy only requires 1

2 of
the original number of operations, thus saving 50% of the
needed computations and parameters in comparison to its non-
asymmetric convolution equivalent. Moreover, factorization
can also improve the learning capacity of the module as a
result of the intermediate activation layers used between the
two 1D convolutions [13].

C. Muti-resolution Dilated Asymmetric module

We design our MDA module to simultaneously exploit
contextual information and recover spatial information. As
shown in Figure 4, the two multi-resolution feature maps
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Fig. 2. Block diagram of the proposed network. “s” indicates the downsampling rate of the feature maps with respect to the original input image (e.g., s=32
indicates output feature maps of size 32×64).

Fig. 3. ASPP and DAPF modules comparison. Each convolution is followed
by its respective batch normalization and activation layers. “C” denotes the
number of feature maps.

K and Q are concatenated and fused together with a 1×1
convolution. This convolution reduces the number of feature
maps by half to reduce the number of computations in the
module and subsequent stages.

After an additional 3×3 convolution that refines the initially
fused feature maps, two parallel branches process the output
feature maps. The asymmetric convolutional branch aims to
exploit the contextual information present in the feature maps
by leveraging the use of dilated convolutions. In contrast, the
non-asymmetric branch focuses on refining the details. The
resulting feature maps are concatenated and processed by a

Fig. 4. Muti-resolution Dilated Asymmetric module. “C” denotes the number
of output feature maps, “||” indicates concatenation and “D” indicates dilated
convolution.

1×1 convolution to match the number of feature maps of
the first 1×1 convolution. Finally, feature maps of both 1×1
convolutions are summed up through a residual connection,
helping to improve the gradient flow.

The dilation rate r of the asymmetric branch gradually
decreases in every MDA block, from the deepest to the
shallowest stage of the decoder (see Figure 2). Specifically,
the dilation rates are r = (8, 4, 2) from Decoder B1 to
Decoder B3, respectively. The intuition behind this idea is
that inner feature maps of the network are richer in contextual
information and can be leveraged by atrous convolutions with
larger dilation rates.
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TABLE I
ABLATION STUDY OF OUR PROPOSED MODULES ON THE CITYSCAPES

VALIDATION SET.

Method GFLOPs No. Parameters ∆p FPS mIoU
FC-HarDNet-70 [7] 35.4 4.10M - 52.3 76.4
Baseline 32.9 1.90M 0M 56.3 75.2
+ ASPP 36.8 3.85M 1.95M 50.2 75.8
+ DAPF 33.9 2.36M 0.46M 53.9 77.7
+ MDA 44.2 2.38M 0.48M 42.2 77.4
+ ASPP + MDA 48.0 4.33M 2.43M 39.1 76.8
+ DAPF + MDA 45.1 2.85M 0.95M 41.1 78.2

IV. EXPERIMENTS

We evaluate our proposed network architectures on the
Cityscapes benchmark [36]. Performance is mainly measured
in mean Intersection over Union accuracy (mIoU) and Frames
per Second (FPS). Besides, we report the number of param-
eters and computational complexity in GFLOPs. All experi-
ments are conducted using the publicly available Cityscapes
dataset [36]. This dataset consists of 5,000 finely annotated
1024 × 2048 images: 2,975 for training, 1,525 for testing,
and another 500 images for validation. Additionally, 19,998
images with coarse annotations are also provided. For a fair
comparison, we only use the fine annotated images, and do
not employ any augmentation technique for testing, such as
multi-scale or multi-crops, which increase the accuracy at the
cost of inference time.

A. Implementation Details

We use PyTorch 1.0 with CUDA 10.2 for all experi-
ments. The same training setting is used for all models,
where Stochastic Gradient Descent (SGD) with weight-decay
5 × 10−4 and momentum 0.9 is used as the optimizer. We
employ the “poly” learning rate strategy lr = initial lr ×
( iter
total iter )0.9, and an initial learning rate of 0.02. Cross-

entropy loss is computed following the online bootstrapping
strategy [37]. Data augmentation consists of random horizontal
flip, random scale in the range [0.5, 2], and random cropping
with 1024 × 1024 crop size. We trained all models for 90k
iterations with batch size 16. For the final models, we follow
the same training protocol for 30K more iterations, setting the
batch size to 24 and the initial learning rate to 0.001.

All networks are pre-trained on the ImageNet dataset [38],
and the inference speed (in FPS) is measured on an Intel
Core i7-9700K desktop with one NVIDIA GTX 1080ti card
unless specified otherwise. For all experiments, the speed is
calculated from the average FPS rate of 10, 000 iterations
measured on images of size 1024 × 2048 × 3.

B. Ablation Study

We show the performance comparison between our pro-
posed DAPF and the DeepLabV3+’s ASPP module [11].
We evaluate the effectiveness of our MDA module and its
combination with DAPF and ASPP. Table I summarizes the
corresponding results. Baseline denotes the modified FC-
HarDNet-70, where the last encoder and the first decoder
blocks are removed, as previously described in Section III.

TABLE II
FASSD-NET ARCHITECTURE. L DENOTES THE NUMBER OF

CONVOLUTION LAYERS IN THE HARDBLOCK.

Stage Name Type Output size
Input - - 1024×2048×3

Encoder

Stem Conv

Conv 3×3 (s=2)* 512×1024×16
Conv 3×3** 512×1024×24

Conv 3×3 (s=2) 256×512×32
Conv 3×3 256×512×48

Encoder B1 HarDBlock (L=4) 256×512×64

Encoder B2
2D Average Pooling

128×256×96
HarDBlock (L=4)

Encoder B3
2D Average Pooling

64×128×160
HarDBlock (L=8)

Encoder B4
2D Average Pooling

32×64×224
HarDBlock (L=8)

DAPF - 32×64×224

Decoder

MDA - 64×128×192
Decoder B1 HarDBlock (L=8) 64×128×160

MDA - 128×256×119
Decoder B2 HarDBlock (L=4) 128×256×78

MDA - 256×512×63
Decoder B3 HarDBlock (L=4) 256×512×48

Output Conv
Conv 1×1 256×512×19

Upsampling ×4 1024×2048×19
*Changes to (s=3) for FASSD-Net-L1
**Changes to (s=2) for FASSD-Net-L2

Note that, for a fair comparison, all methods shown in Table
I are trained without further fine-tuning.

Our DAPF module outperforms DeepLabV3+’s ASPP in
all four metrics (GFLOPS, Parameters, FPS and mIoU). In
addition, the increase of parameters (∆p) by DAPF from the
Baseline is significantly fewer than the ASPP module (0.46M
vs 1.95M). In resume, our module is more than four times
lighter than ASPP, and presents an increase of 1.9% of mIoU.
It can be observed that the addition of our MDA strategy
outperforms the mIoU of the baseline network to almost the
same degree as DAPF. Likewise, our MDA strategy consumes
roughly the same number of parameters. However, since MDA
is used in three different levels of the decoder, the FPS drop
becomes evident compared to DAPF.

The combination of our two proposals achieves the best
mIoU accuracy. Specifically, it outperforms the baseline and
the state-of-the-art results of FC-HarDNet-70 [7] by 3% and
1.8%, respectively. Additionally, the increase of parameters
(∆p) of our proposal is less than 50% over the case when
ASSP is used. On top of that, the total number of parameters
is significantly lower than those needed by FC-HArDNet-
70 (2.85M vs 4.10M). Note that Baseline + DAPF + MDA
corresponds to our final model called FASSD-Net, as shown
in Figure 2.

C. Light variations of FASSD-Net

In addition to our network FASSD-Net, we introduce two
light versions designed to maintain a better tradeoff between
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TABLE III
PER-CLASS MIOU SCORE COMPARISON OF OUR PROPOSALS ON THE CITYSCAPES VALIDATION SET.

Method road s.walk build. wall fence pole t.light t.sign veg. terr. sky person rider car truck bus train mbik bike mIoU
FC-HarDNet-70 [7] 98.1 84.6 92.6 60.0 63.5 64.9 69.7 78.8 92.2 62.8 95.0 81.4 60.7 95.0 73.9 82.4 77.4 61.7 76.2 77.4
FASSD-Net 98.3 86.0 92.9 59.6 63.9 67.1 71.7 79.6 92.5 63.7 95.0 82.1 63.2 95.4 80.8 87.8 79.6 61.3 76.8 78.8
FASSD-Net-L1 98.2 84.6 92.4 54.7 61.3 63.3 68.2 77.1 92.1 61.8 94.9 80.0 59.8 94.9 76.0 82.7 74.7 59.1 74.6 76.3
FASSD-Net-L2 97.9 83.1 91.6 55.6 57.0 58.0 62.5 71.8 91.7 63.0 94.4 77.3 57.0 93.8 75.5 81.9 71.1 53.1 70.8 74.1

Fig. 5. Qualitative results of the proposed networks. Regions of improvement are highlighted with yellow squares.

speed and accuracy. We call these networks: FASSD-Net-L1
and FASSD-Net-L2.

Table II shows the detailed architecture of FASSD-Net,
including the output and number of channels for each ele-
ment. From Table II, FASSD-Net-L1 differs only in the first
convolution layer, where the convolution stride is increased
from 2 to 3. Such modification, preserves the same number
of parameters of the network and leads to a faster inference
speed at the cost of a small drop in accuracy. Specifically,
it is 1.9× faster and 2.5% less accurate. FASSD-Net-L2, on
the other hand, is designed to be the fastest among our three
proposals. It adopts an additional convolution stride of 2 in
the second convolution layer of the stem block. In addition, all
the HarDBlocks in the decoder are replaced by conventional
3×3 convolution layers of 64 channels. Thus, FASSD-Net-
L2 is 3.2× faster than FASSD-Net with only a 4.7% drop in
accuracy performance.

We report the results of per-class mIoU accuracy in Table
III. FASSD-Net obtains the highest score in 17 out of 19
categories, outperforming the current state-of-the-art model,
FC-HarDNet-70. Most significative improvements occur in

the truck and bus classes with 6.9% and 5.4%, respectively.
Similarly, FASSD-Net-L1 and FASSD-Net-L2 also obtain
better results overall in these two classes compared to FC-
HarDNet-70, despite being less accurate models. Qualitative
results of our FASSD-Net variations are shown in Figure
5. As the quantitative results suggest, the most significant
improvements occur on pixels belonging to large objects, such
as trucks and buses. Compared to FC-HarDNet-70, all three
FASSD-Net variations better differentiate between car, bus,
and truck classes. For a fair comparison, we have conducted
the evaluation of our final models against FC-HarDNet-70 with
its official weights from its open-source implementation1.

D. Comparison with state-of-the-art real-time methods

Table IV shows the overall comparison of our network
proposals versus other state-of-the-art methods for real-time
semantic segmentation. The table is divided into three cat-
egories, based on the inference speed directly comparable to
each of our three proposed networks. For a more complete and

1github.com/PingoLH/FCHarDNet
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TABLE IV
COMPARISON BETWEEN STATE-OF-THE-ART NETWORKS FOR REAL-TIME SEMANTIC SEGMENTATION.

Method Input Size GPU GFLOPs No. Parameters FPS FPS (norm.) mIoU
DeepLabV3+ [11] 512×1024 Titan X (P) - - ≈ 1 ≈ 1 79.6
PSPNet [15] 713×713 Titan X (P) - - < 1 < 1 79.7
Fast-SCNN [25] 1024×2048 Titan XP - 1.11M 123.5 110.3 69.2
SwiftNetRN-18 [8] 512×1024 GTX 1080ti 26.0 11.8M 134.9 134.9 70.2
FC-HarDNet-70 (L2) 1024×2048 GTX 1080ti 6.6 2.86M 152.8 152.8 72.1
FASSD-Net-L2 (ours) 1024×2048 GTX 1080ti 8.7 2.3M 133.1 133.1 74.1
ERFNet [13] 512×1024 Titan X (M) - 2.10M 41.7 68.4 71.5
CAS [28] 768×1536 Titan XP - - 108.0 96.4 71.6
DF1-Seg-d8 [26] 1024×2048 GTX 1080ti - - 136.9* 82.9 72.4
FasterSeg [12] 1024×2048 GTX 1080ti 28.2 4.4M 163.9* 99.3 73.1
FC-HarDNet-70 (L1) 1024×2048 GTX 1080ti 15.7 4.1M 93.4 93.4 74.8
FASSD-Net-L1 (ours) 1024×2048 GTX 1080ti 20.0 2.85M 78.0 78.0 76.3
ICNet [2] 1024×2048 Titan X (M) 28.3 26.5M 30.3 49.7 67.7
DABNet [5] 1024×2048 GTX 1080ti 41.8 0.76M 27.7 27.7 69.1
GUN [39] 512×1024 Titan XP - - 33.3 29.7 69.6
BiSeNet [3] 768×1536 Titan XP - 49M 65.5 58.5 74.8
SwiftNetRN-18 [8] 1024×2048 GTX 1080ti 104.0 11.8M 39.9 39.9 75.4
FC-HarDNet-70 [7] 1024×2048 GTX 1080ti 35.4 4.1M 53.0 53.0 77.4
FASSD-Net (ours) 1024×2048 GTX 1080ti 45.1 2.85M 41.1 41.1 78.8
* Speed measured with TensorRT acceleration

fair comparison with respect to our baseline, FC-HarDNet-70
(L1) and FC-HarDNet-70 (L2) are our modified implemen-
tations of FC-HarDNet-70 that closely resemble to our two
light networks, following the same changes and our same
training protocol. FC-HarDNet-70 (L1) and FC-HarDNet-70
(L2) are directly modified from the official source code of
FC-HarDNet-70.

For fair comparison under different GPU architectures, we
follow the same protocol as Orsic et al. [8] and let the column
FPS (norm.) in Table IV to provide a speed estimation of the
model running on a GTX 1080ti GPU. Scaling factors are: 1.0
for GTX 1080ti, 0.61 for Titan X (Maxwell), 1.03 for Titan
X (Pascal), and 1.12 for Titan XP.

Our main network, FASSD-Net, surpasses by a considerable
margin the mIoU score of all other methods for real-time
semantic segmentation, requiring 1.44× fewer parameters and
being 1.4% more accurate than the closest competitor FC-
HarDNet-70.

Our second network, FASSD-Net-L1, resembles BiSeNet
in mIoU accuracy and FPS. However, the speed of BiSeNet
has been originally measured on 768 × 1536 images with an
NVIDIA Titan XP card. For a fair comparison, and according
to Zhuang et al. [40], we let its speed to be 37 FPS evaluated
on 1024 × 2048 images on an NVIDIA GTX 1080ti card.
Therefore, resulting in our network being about 2.1× faster,
1.5% more accurate, and requiring 17.2× fewer parameters.

Similarly, FASSD-Net-L2 can be compared to FasterSeg
and DF1-Seg-d8, which were designed and optimized by NAS
methodologies. Both methods utilize TensorRT acceleration
[41] to increase their speed performance. For a fair compar-
ison, we let 1.65× be the acceleration factor of TensorRT.
This value is approximated from works that present results
with and without TensorRT, such as FasterSeg [12]. Under
these assumptions, our FASSD-Net-L2 is faster than FasterSeg

and DF1-Seg-d8, while being 1% and 1.7% more accurate,
respectively.

V. CONCLUSION

In this paper, we focus on reducing the accuracy gap
between real-time and non-real-time semantic segmentation
networks. For this purpose, we have proposed the DAPF and
MDA modules. These modules exploit the contextual informa-
tion in several stages of the decoder and boost the accuracy
performance of the baseline network, keeping relatively low
computational cost. Using our two modules jointly, we have
designed three network variations that can be chosen depend-
ing on the computational budget. Our main network, FASSD-
Net, sets the new state-of-the-art mIoU accuracy for the task of
real-time semantic segmentation on the Cityscapes validation
set. In addition, our proposed FASSD-Net-L2 ranks as the
fastest network when evaluated on 1024×2048 images without
using additional network acceleration techniques. As future
work, we would like to evaluate our proposals on different
scenarios, such as indoor understanding, or medical images.
We also would like to apply acceleration techniques, such as
network quantization or network distillation, to increase the
speed of our models further.
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