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Abstract. In recent years, multi-task learning (MTL) for image transla-
tion tasks has been actively explored. For MTL image translation, a net-
work consisting of a shared encoder and multiple task-specific decoders is
commonly used. In this case, half parts of the network are task-specific,
which brings a significant increase in the number of parameters when
the number of tasks increases. Therefore, task-specific parts should be
as small as possible. In this paper, we propose a method for MTL image
translation using a single network with negligibly small task-specific
parts, in which we share not only the encoder part but also the decoder
part. In the proposed method, activation signals are adjusted for each
task using Feature-wise Linear Modulation (FiLM) which performs affine
transformation based on task conditional signals. In addition, we tried
to let a single network learn mixing of heterogeneous tasks such as a mix
of semantic segmentation and style transfer. With several experiments,
we demonstrate that a single network is able to learn heterogeneous
image translation tasks and their mixed tasks by following our proposed
method. In addition, despite its small model size, our network achieves
better performance than some of the latest baselines in most of the indi-
vidual tasks.

1 Introduction

Deep Convolutional Neural Network (CNN) has achieved great success in various
image transformation tasks such as semantic segmentation, style transfer, and
coloring of grayscale photos. In general, each of these tasks is trained with a
single network independently, which is called as “Single Task Learning (STL).”
On the other hand, by employing Multi Task Learning (MTL), multiple tasks
can be trained with one network. Therefore, MTL is considered to be desirable
in actual applications that need to process multiple tasks with limited resources.
However, MTL models currently proposed for image translation tasks [19,23,29]
require task-specific parts, which are sometime about half portion of the whole
network, in addition to the parts shared by all the tasks. Typically, the MTL
image translation network consists of a shared encoder and multiple task-specific
decoders. In this case, the number of network parameters greatly increases as
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the number of tasks increases. Learning of multiple tasks with a single network
consisting of a shared encoder and a shared decoder would have the advantage
that the size of the network does not depend on the number of tasks involved.
However, the distributions of the activations generally differ from task to task
when multiple tasks are trained with a single network. It is necessary to adjust
the distribution of the activations to the task-dependent distribution for each
task. One of the techniques to enable adjusting the distribution of activations is
Feature-wise Linear Modulation (FiLM) [5,32], which is a formalization of the
conditional affine transformation. By applying the affine transformation based on
the conditional signal to the network, the activation distribution can be adjusted
for each task.

Furthermore, Dumoulin et al. [6], took advantage of the FiLM character-
istics by proposing a multiple style transfer. They demonstrated that it was
possible to mix multiple styles by providing a mixed conditional vector in addi-
tion to the conditional single style selection. Their results implied the possibility
of extending mixing of multiple different styles to mixing of multiple different
image transformation tasks. Therefore, in our work, we explore learning of mix-
ing of multiple heterogeneous image translation tasks with a single network using
FiLM, as well as learning of multiple tasks. We call this “mixed-task learning.”
Mixed-task learning is an unsolved problem in the existing MTL works. If mixed-
task learning is possible with a single network, the trained network can process
new tasks by combining existing tasks, which can be regarded as the first step to
realize a general purpose image translation network. This is similar to arbitrary
style transfer [10] which performs fast style transfer with any unknown styles by
adaptive mixing of trained known styles. Note that in this paper, we assume two
kinds of mixing of heterogeneous tasks: (1) sequential mixing and (2) mixing
by region masking. “Sequential mixing” is mixing of multiple image translation
tasks sequentially such as applying denoising first and applying style transfer
next, while “mixing by region masking” is masking out the output image pro-
cessed by one task using region masks estimated by the semantic segmentation
task such as style transfer on only specific object region. Figure 1 shows some
results on learning of both multiple and mixed tasks by our method.

The major contributions of this paper can be summarized as follows:
(1) We propose a single network capable of learning multiple heterogeneous

image translation tasks with negligibly small task-specific parts, which is based
on FiLM. (2) We enable mixed-task learning with the proposed network using
synthesized mixed-task training samples. (3) We demonstrate the effectiveness of
our proposed network on several experiments, which achieves better performance
than the latest baselines (SGN [2] and Piggyback [25]), even with a smaller
number of parameters.
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Fig. 1. The proposed network can learn multiple mixed tasks (Right) as well as mul-
tiple tasks (Left) on a single model with negligibly small task-specific parts.

2 Related Work

Multi-task Learning (MTL): In MTL, it has been shown that joint learning
of multiple tasks leads to an improvement in accuracy [7,8,11,13,33,38]. However,
feature sharing among multiple tasks can have a negative or positive effect depend-
ing on the combination of tasks (task interference) [23,34]. In our work, we use
Feature-wise Linear Modulation (FiLM) [5,32] as a method to reduce task interfer-
ence. By using FiLM, we apply a conditional transformation to activation signals,
and realize a network which changes the operation dynamically for each task.

In MTL of image translation tasks, most of the networks have a shared
encoder, and task-specific decoders or task-specific parts [3,21,28,37]. Cross-
Stitch Network [29] includes a feed-forward network for each task, and uses
cross-stitch units to share features between tasks. UberNet [23] proposes an
image pyramid approach for processing images across multiple resolutions. At
each resolution, an additional task-specific layer is formed on top of the shared
network. Maninis et al. [26] proposes a network that modifies behavior based
on task-specific features and attention. Task attention uses task-specific residual
adapter branch and Squeeze-and-Excitation modulation. In addition, they also
use adversarial training to force shared parts to be statistically indistinguishable
across tasks. Strezoski et al. [35] proposes a task-specific binary mask which is
applied to the activations of each channel, and the activations corresponding
to each task were extracted. Bragman et al. [1] proposes the similar idea with
stochastic assignments of convolution channels to tasks instead of binary assign-
ments. Liu et al. [24] have proposed a multi-task attention network (MTAN) that
can learn the attention of task-specific feature levels. MTAN consists of a single
shared network including global feature sharing and a soft-attention module for
each task. In the above-mentioned networks, it is necessary to train a network by
replacing part of the network for each task. Therefore, more network parameters
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are required compared to a single task network, and the number of parameters
of task-specific parts increases in proportion to the number of tasks involved.

No mixed-task learning with heterogeneous image translation tasks has been
proposed as far as we know. One of the most similar work is Sym-parameterized
Generative Network (SGN) [2]. In SGN, the distribution of multiple domains
is learned by changing the weighted loss function dynamically. Thus, an input
image can be dynamically translated to a mixed domain. SGN is similar to
our work in that it uses a single network and performs learning of mixed loss
functions. However, unlike our work, the tasks for which SGN mixed learning
was applied were style transfer and domain transfer, both of which are similar
tasks to each other. Heterogeneous task mixing such as mixing of inpainting and
style transfer was not examined.

Continual Learning: Continuous learning [30] is a learning method that, when
there is a series of n tasks t1, ..., tn, learns those tasks one by one and does not
reduce the accuracy of the tasks learned in the past. However, catastrophic
forgetting, which degrades the performance of t1, ..., tn−1 by learning tn, is a
major problem. Many studies have been proposed to address this problem. Pig-
gyback [25] is the methods that transforms the output by applying a learned
weight mask. Although in the original paper [25], Piggyback was applied to only
image classification tasks, Matsumoto et al. [27] showed that Piggyback was able
to be applied to image transformation tasks with an encoder-decoder network.
Piggyback is similar to our work in that multiple tasks can be learned with a
single network. However, it is not able to perform mixed-task learning.

Feature-wise Linear Modulation (FiLM): FiLM [5,32] is a formalization of
the conditional affine transformation. By applying the affine transformation to
the network based on the condition, the effect on the output of the network is
learned. Specifically, as shown in Eq. (1), we learn the functions fγ and fβ of
an input conditional signal c that output the scaling coefficient γi and the shift
coefficient βi. The subscript i means the feature or feature map number. As
shown in Eq. (2), γi and βi regulate network activations.

γi = fγ,i(c) , βi = fβ,i(c) (1)
FiLM(Fi|γi, βi) = γiFi + βi (2)

Various methods using FiLM have been proposed for image translation tasks.
Dumoulin et al. [6] made it possible to combine multiple styles by applying FiLM
to Fast Style Transfer [18]. AdaIN [15] is another study that applied FiLM to
Style Transfer. The AdaIN module is widely used in various image translation
tasks as well as style transfer because of the ability to manipulate network out-
puts using AdaIN parameters [16,20,31]. In our work, we propose using FiLM
as a method for learning multiple tasks and mixed tasks using a single net-
work. In the proposed method, we extend the work of Dumoulin et al. from
multiple mixed style transfer to multiple mixed image transformation tasks. For
FiLM generators, we use StyleGAN’s Mapping Network [20] mechanism, which
can generate AdaIN parameters from the conditional vectors with a sequence of
fully-connected layers.
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3 Proposed Method

In our work, Feature-wise Linear Modulation (FiLM) [5,32] is used for learning
multiple image translation tasks using a single encoder-decoder network. Its
effectiveness has been demonstrated in various image translation tasks. In other
words, it can be said that FiLM has high versatility in image transformation
tasks and is expected to be able to learn various image transformation tasks on
a single network. Therefore, in our work, we propose learning of different kinds of
image transformation tasks with a single network using FiLM, which is the first
objective of this paper. The second objective is to accomplish mixed-task learning
of multiple heterogeneous image translation tasks by a single network using
FiLM, which is inspired by the work on mixing of multiple styles by Dumoulin
et al. [6].

3.1 Task Conditional Vector

A task conditional vector is used for specifying tasks at the time of both train-
ing and inference of the network. At training time, the task conditional vector
corresponding to the task to be learned by the network is given. Similarly, at
inference time, the task conditional vector corresponding to the task to be exe-
cuted is given. If the number of tasks is n, the task conditional vector c is
defined as a n-dimensional vector [c1, ..., cn]. At inference time, ci takes values
in the range of 0.0 to 1.0, while ci can be 0.0 or 1.0 at training time. Note that a
zero conditional vector, c = [0.0, 0.0, 0.0], represents the identity transformation
in which the output is the same as the input. Including the identity transforma-
tion in the training is needed to control the degree of the transformation, which
can be explicitly defined by providing intermediate values between 0.0 and 1.0
in the task conditional vector.

3.2 FiLM-Based Network Architecture

We propose an architecture consisting of the FiLM generator and the FiLM
network, as shown in Fig. 2. For the FiLM network, we adopted the Encoder-
Decoder CNN with five Resblocks proposed by Johnson et al. [18]. This network
is typically used in image translation tasks such as Pix2Pix [17] and Cycle-
GAN [39]. As normalization layers, we used Instance Normalization (IN) [36]
instead of Batch Normalization as used in the original network. We inserted
FiLM layers after all the layers except for the last layer. The combination of
IN and FiLM is equivalent to AdaIN [15]. The FiLM layer receives the FiLM
parameters from the FiLM generator, and controls the operation of the network
by affine transformation based on the FiLM parameters.

The FiLM generator is built with only Fully Connected (FC) layers, referring
to the architecture of StyleGAN’s mapping network [20]. The FC layers generate
the FiLM parameters, γi and βi, where i depicts an index of the FiLM layer.
Although one FC layer is illustrated in Fig. 2, we compared one, three and five
FCs for the FiLM generator in the preliminary experiments.
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Fig. 2. Network Architecture. The FiLM network consists of three convolution
layers, five residual blocks, and three deconvolution layers. FiLM layers are inserted
after all the instance normalization layers including resblocks.

Fig. 3. Computation in a IN+FiLM layer. After normalizing the input features by
Instance Normalization, affine transformation with FiLM parameters is applied. These
parameters are obtained by the FiLM generator.

The computation of the FiLM layers is carried out based on Eq. 1 and Eq. 2
by using the FiLM parameters, γi and βi, obtained by the FiLM generator
after IN layers, as shown in Fig. 3. Here, γ represents scaling parameters, and β
represents bias parameters.

As explained above, most part of the proposed network are shared with all
the tasks. Only the number of input elements of the first FC layer in the FiLM
generator depends on the number of tasks, which is the only task-specific part.
Therefore, the number of the task-specific parameters is negligibly small.
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3.3 Training of Mixed Tasks

We examine the possibility of a FiLM-based network for mixed-task learning in
addition to learning of multiple tasks. We prepared three methods for mixed-task
learning.

In Method 1, we train only single tasks individually. We expect the inference
on mixed tasks is performed implicitly, in the same way as the FiLM-based
multiple style transfer [6].

In Method 2, we train mixed tasks explicitly with the total loss func-
tions of the multiple tasks we want to mix. We use a simple mixed loss,
Lmixed = LtaskA + LtaskB . To calculate Lmixed, we calculate LtaskA and LtaskB

with training samples of task A and B, respectively, and sum up both in a single
function. For training, we add mixed tasks to a task set originally consisting of
only single individual tasks. In the training loop, we select randomly one task
from an extended task set at every mini-batch. Note that in Method 2 and 3, we
use a mixed-task conditional vector in the form of c = [1.0, 1.0] when a mixed
task is selected.

In Method 3, we create new training samples for mixed tasks. Figure 4 shows
how to create mixed-task samples. We prepare two ways to create mixed-task
samples as shown in Fig. 4: (a) sequential mixing and (b) mixing by masking.
Sequential mixing is a standard mixing way of multiple tasks, while mixing by
masking is a combination of semantic segmentation with a different task. In (a)
we need image translation networks in the second translation step, while we can
use training ground truth (GT) samples instead of translation processing in the
first step. In (b) we need the trained network of the fast style transfer if a mixed
task contains style transfer, since no GT samples exist for this task. Therefore,
in both ways, first, we train all the tasks except for semantic segmentation with
a single FiLM-based network. Note that we can substitute a set of single-task
networks for the multi-task network.

Next, we generate mixed-task samples. In (a), we pick up GT samples of the
first task, and apply the trained model of the second task using the corresponding
task conditional vectors. In the example of Fig. 4(a), the sequentially-translated
image by Denoising and Style Transfer is generated. Thus, the synthesized image
is used as a GT image (mixed GT) of the mixed-task of “Denoising + Style
Transfer.” We use another mixing way, (b) mixing by masking, for the case
that mixed tasks contain semantic segmentation since we want to cut out the
region belonging to specific objects as shown in Fig. 4(b). In (b), we pick up the
segmentation mask from the training dataset of semantic segmentation, and the
corresponding GT sample of the second task. If GT samples are not available
in the second task, we apply the trained network to generate it. Next, we mask
out the output of the second task with the segmentation mask. In the example
of Fig. 4(b), we generate a mixed-task sample by combining Style Transfer and
semantic segmentation on the horse image. To train mixed task samples, we use
L2 loss. We compare these three methods in the experiments.
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(a) Sequential mixing (b) Mixing by masking

Fig. 4. Two ways to generate mixed-task training samples. (a) Denoising and
Style Transfer are mixed sequentially. (b) The output of Style Transfer is masked out
by the segmentation mask obtained Semantic Segmentation Task.

4 Experiments

We performed three kinds of experiments to verify the effectiveness of the pro-
posed method: (1) learning of multiple different tasks, (2) learning of mixed tasks
with the three training methods, and (3) comparison with the baselines.

In (1), we verified whether it is possible to learn multiple different image
translation tasks with a single FiLM-based network. In (2), we verified whether
the proposed method could learn mixed image transformation tasks with a single
FiLM-based network. To do that, we qualitatively compared the three methods
explained in Sect. 3.3. Finally, in (3), we quantitatively compared the proposed
method with several baselines by evaluating their performance on all the tasks.

The dataset used for the experiments was Pascal VOC [9], a dataset contain-
ing general images such as people, vehicles, and animals with 20-class pixel-level
annotation. In the experiment, out of 11,355 images on Pascal VOC 2011 for
which Hariharan et al. [12] created the pixel-level annotation data, 8,498 were
used as training data and 2,857 were used as test data.

As the network, we used the FiLM-based network explained in Sect. 3.2.
In all the training, Adam [22] with a learning rate of 1e−4 was used as the
optimization method, and the batch size were 32. To training multiple tasks
with one network, one task is randomly selected from a task set at every mini-
batch. So we set the number of epochs as 300n, where n is the total number
of all the tasks to be learned. We did not use any weighting for loss functions,
since several existing works [2,24] showed that no weighting or equal weighting
was enough for training of multiple image translation tasks. Regarding the FiLM
generator, we used one FC layer in the experiments, because we obtained good
enough results with only one FC layer, which helped to keep the total model size
small.
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Table 1. The task list with the loss functions.

Task number Task name Loss function
Task 0 reconstruction (identity) L2 loss
Task 1 inpainting L2 loss
Task 2 denoising L2 loss
Task 3 semantic segmentation L2 loss + adversarial loss

Task 4 style transfer 1 (Gogh) perceptual loss

Task 5 style transfer 2 (Munk) perceptual loss

4.1 Task Sets for the Experiments

Table 1 shows six tasks and their loss functions used in the experiments. For all
the tasks, both the inputs and the outputs are three-channel images.

Task 0 is the reconstruction of an input image which is equivalent to auto-
encoder or identity transformation. In Task 1 (the inpainting task), we used
training images masked with small square regions, as shown in the second column
of Fig. 5, and in Task 2 (the denoising task) we used training images to which
scratches were randomly added, as shown in the third column of Fig. 5.

Regarding Task 3 (the semantic segmentation task), the semantic segmen-
tation network usually generates a semantic segmentation map (segmentation
masks) with the number of channels equal to the number of classes, where a
cross-entropy loss is used for training. However, in our work, to mix segmenta-
tion with a second task, the output of semantic segmentation is a three-channel
image in which the region of the specified classes is cut out and the others
are filled out. The target image used for learning of semantic segmentation was
artificially created based on the annotation mask of the dataset. To train the
semantic segmentation task, we used both L2 loss and adversarial loss instead
of the conventional cross-entropy loss. In the experiment, 20 classes except for
the background class conformed the set of the cut-out classes. In other words,
the output of semantic segmentation is an image in which the background is
filled with the background color. In this experiment, the RGB value of the back-
ground part of the semantic segmentation was set to (0,0,0) for the input image
normalized by the ImageNet [4] mean and standard deviation.

Task 4 and 5 are Fast Neural Style Transfer with different styles using per-
ceptual loss in the same way as Johnson et al. [18].

4.2 Experiment 1: Learning of Multiple Different Tasks

In Experiment 1, we qualitatively evaluate the proposed FiLM-based network to
learn multiple different image translation tasks at the same time. We trained the
proposed FiLM-based network with the six tasks shown in Table 1. To train the
network and to get the results of all the tasks, we used one-hot vectors except for
Task 0, which uses a zero vector. Figure 5 shows the results of all the six tasks.
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Fig. 5. The results of all the six tasks generated by one trained FiLM-based network.

From the figure, it can be seen that most of the tasks are successfully executed
by changing only the task conditional vector with a single trained network. No
prominent task degradation and interference is not observed except for inpainting.
Note that the result for inpainting (Task 1) is not perfect, partly because 8,498
training samples might be not enough for this task, which explicitly include images
with square-masking. From these results, we conclude thatmultiple different image
translation tasks can be learned with a single FiLM-based model.

4.3 Experiment 2: Learning of Mixed Tasks

In Experiment 2, we examine if it is possible to learn mixing of different image
transformation tasks using the proposed method. As explained in Sect. 3.3, we
prepared three methods: (1) training only individual tasks, (2) training mixed
tasks using a compound loss function, and (3) training using synthesized mixed-
task samples. For verification of mixed-task learning, four tasks were used: recon-
struction, denoising, semantic segmentation, and Style Transfer 1, shown in
Table 1. Then, experiments were performed on all the combinations of these
patterns.

For Method 3, we used sequential mixing (Fig. 4(a)) for the pair of the denois-
ing and the style transfer tasks, and mixing by masking (Fig. 4(b)) for the other
two pairs. In the training time of Method 3, we repeat training of a FiLM-based
network twice. First, we train individual single tasks with a single FiLM-based
network, and after generating mixed samples, we train again both single tasks
and mixed tasks with the FiLM-based network. To train mixed task samples, we
use L2 loss between an output image and a synthesized mixed-task sample.

To train mixed tasks with Method 2 and 3, we used mixed-task conditional
vectors shown in Table 2. Although the summed value of the conditional vector
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Table 2. Task conditional vectors for mixed-task learning.

Mixed tasks Conditional vector Mixing for Method 3

Mix 1 Denoising + Style Transefer 1 [1.0, 0.0, 1.0] Sequential

Mix 2 Denoising + semantic segmentation [1.0, 1.0, 0.0] Masking

Mix 3 Semantic segmentation + Style Transfer1 [0.0, 1.0, 1.0] Masking

is commonly set as 1.0, the degree of both task in the mixed task should be
normal in case of sequential mix and mixing by masking. Therefore, we set 1.0
to the elements corresponding to both tasks, as shown in the table.

Figure 6 shows the experimental results. In case of Method 1, the results of
Mix 2 and 3 look like weak combination of two tasks, while the result of Mix 1
remains many scratches, which means only style transfer without denoising was
performed. In case of Method 2, the outputs are biased toward either output of
the mixed task. For Mix 1 and 2, only denoising was carried out, while for Mix 3
only segmentation was performed. Therefore, we can conclude that with Method
1 in which only individual tasks are trained, and with Method 2 in which mixed-

Fig. 6. The outputs of learning of the mixed tasks with Method 1, 2, and 3.

Fig. 7. The transitional results of mixed-task learning with Method 3 by changing the
conditional weights by 0.2.
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task was learned using the summed loss function, it is not possible to learn
mixed tasks with the FiLM-based network. On the other hand, with Method
3, the results are almost the same as ground truth (GT), which means mixed-
task learning succeeded. We found that mixed task learning of heterogeneous
image translation tasks is possible when we use synthesized mixed-task training
samples and L2 loss for training of mixed tasks.

In addition, we found an interesting characteristic of mixed-task learning
with Method 3. Figure 7 shows the three kinds of mixed-task results of Method
3 by changing the conditional weights by 0.2. The elements of a task conditional
vector corresponding to denoising, semantic segmentation, and Style Transfer1
is represented by c1, c2 and c3, respectively. The figure shows that by performing
mixed-task learning with mixed task conditions shown in Table 2 and synthesized
mixed training samples, a natural transition from identity transformation to
mixed-task image translation is possible by gradually changing the conditional
vector at inference time, which covers both single task translations of the mixed
tasks. This result indicates that the objective space between two tasks can be
regarded as a linear combination space of the two tasks by using the proposed
method, and the degree of the mixed task can be controlled over the 2D linear
combination space among two target tasks during inference.

4.4 Experiment 3: Comparison to the Baselines

In Experiment 3, we compare the proposed method with the baselines both qual-
itatively and quantitatively. In this experiment, the basic network architecture
of all the baselines was the same as the proposed method.

The first baseline is the Sym-parameterized Generative Network (SGN) [2],
which adopts Conditional Channel Attention Module (CCAM) as an injection
method of conditional signals. Inspired by SENet [14], CCAM controls feature
channels based on Sigmoid attention by integrating both conditional signals and
average-pooled feature map activations. The second baseline is the CCAM of SGN
with bias control. The normal CCAM uses only scaling to control feature channels
with Sigmoid function. Therefore, more flexible feature channel control is expected
to be performed by adding bias control to CCAM. Note that no Sigmoid was used
for the bias. Although this baseline is similar to FiLM [5,32], it uses the activa-
tion signals in addition to the task conditional vector to generate scaling and bias
parameters. Besides it uses instance normalization as normalization layers and
CCAM were inserted on only three parts of the network according to the SGN orig-
inal paper [2].

The third baseline is Piggyback [25], which is a method for fixing the param-
eters of the base network learned first and learning the task-specific binary mask
each time a new task is added. For the initialization of the real number mask,
all parameters were initialized to 1e−2, as in the Piggyback’s paper, and the
threshold of the binary mask was set to 5e−3 in the experiment. We created
two models, Piggyback1 and Piggyback2, which used different image translation
tasks for learning the base network. For Piggyback1, inpainting was selected, and
for Piggyback2, semantic segmentation was selected as the task used for learning
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Fig. 8. The results of the proposed method and the baselines.

Fig. 9. Comparison of the results of mixed-task learning.

the base network. In the second and subsequent tasks, we learned a binary mask
that selects effective weights for the newly added task from the base network.
Since it is not possible to perform mixed-task learning with Piggyback, only the
results of single tasks alone were compared.

First, we quantitatively evaluated the proposed method and the baselines.
Figure 8 shows their outputs when learning of multiple heterogeneous image
translation tasks. From the figure, it can be seen that in Piggyback1, much noise
appears in the background part in the semantic segmentation. In Piggyback2,
the outputs in the denoising still have a lots of scratches. In SGN and SGN+bias,
in Style Transfer 1, the blue hue of the style was not transferred, although the
style with yellow spots was transferred. Similarly, style transfer failed in Style
Transfer2.

Figure 9 compares the output of the proposed method and the baseline for
mixed-task learning. Following Method 3 explained in Sect. 3.3, we used synthe-
sized mixed-task samples to train the networks of SGN and SGN+bias as well as
the proposed network, since Method 1 and 2 did not work between heterogeneous
image translation tasks in Experiment 2. From the figure, we can see that mix
learning is possible at the two baselines as well as the proposed method. How-



732 M. Takeda et al.

Table 3. Comparison of the proposed method with the baselines.

Ours EncIN SGN SGN+bias Piggyback1 Piggyback2 Single SharedEnc
Task0 reconstruction 0.1408 0.1862 0.4182 0.4191 0.1598 0.1619 0.1222 0.1797

(MSE⇓, SSIM⇑) 0.9870 0.9820 0.9579 0.9578 0.9854 0.9860 0.9892 0.9844
Task1 inpainting 0.0932 0.1041 0.4524 0.4518 0.1230 0.1535 0.0771 0.2375

(MSE⇓, SSIM⇑)) 0.9931 0.9920 0.9553 0.9554 0.9939 0.9885 0.9945 0.9806
Task2 denoising 0.0839 0.1038 0.4300 0.4309 0.1742 0.2022 0.0890 0.2045

(MSE⇓, SSIM⇑) 0.9936 0.9916 0.8703 0.9572 0.9868 0.9830 0.9931 0.9825
Task3 semantic segmentation 0.2112 0.2298 0.5942 0.5892 0.3657 0.2112 0.2289 0.2516

(MSE⇓, SSIM⇑, IoU⇑) 0.9798 0.9775 0.9473 0.9500 0.9630 0.9801 0.9775 0.9753
0.5907 0.5689 0.4299 0.4454 0.4030 0.6014 0.5639 0.5545

Task4 Style Transfer1 (ST1) (FID⇓) 281.3 318.3 299.0 307.1 333.4.8 331.4 186.7 324.4
Task5 Style Transfer2 (ST2) (FID⇓) 235.3 250.6 263.6 250.1 297.6 323.3 163.9 251.6
Mix1 denoising + ST1 (FID⇓) 304.3 361.3 349.1 343.4 - - - -
Mix2 denoising + 0.2130 0.2166 0.5699 0.5663 - - - -

semantic segmentation 0.9794 0.9791 0.9524 0.9519 - - - -
(MSE⇓, SSIM⇑, IoU⇑) 0.5755 0.5752 0.4700 0.4625 - - - -

Mix3 semantic segmentation + ST1 313.0 320.3 339.0 348.6 - - - -
(FID⇓, IoU⇑) 0.5457 0.5403 0.5011 0.4555 - - - -
Model size (num. of prams) 1,698,435 1,695,747 1,765,363 1,902,243 1,688,835 1,688,835 10,075,410 9,572,370

ever, compared to the proposed method, the two baselines showed more noise. In
Mix 2 and Mix 3 in which semantic segmentation is included, the contrast of the
cut-out part is increased, the output is dark overall, and noise in the background
part is conspicuous. In Mix 1 and Mix 3, in which Style Transfer1 is included,
in addition to the blue hue of the style not being transferred, white noise is seen
in SGN, and orange noise is seen in SGN+bias. From Fig. 8 and Fig. 9, it can
be said that the proposed method was superior to the baselines qualitatively,
especially in the tasks of semantic segmentation and Style Transfer.

Furthermore, we quantitatively evaluate the proposed method and the base-
lines. In this evaluation, we added three additional baselines: (1) a set of single
models trained with six tasks independently (Single), (2) a model consisting
of a shared encoder and task-specific ResBlocks/decoders (SharedEnc), and (3)
the modified FiLM-based network in which the encoder part uses no FiLM but
standard INs (EncIn). Thus, (1) is the strong baseline, (2) is the standard MTL
network for multi-task image translation, and (3) is a variant of the proposed
FiLM-based network with a shared encoder. As evaluation indices, Frechet Incep-
tion Distance (FID) is used for tasks including Style Transfer, while Mean Square
Error (MSE) and Structural Similarity (SSIM) are used for other tasks. For the
tasks including semantic segmentation, Intersection over Union (IoU) is used as
well.

Table 3 compares the performance of the proposed method and the baselines
in the case of learning of both multiple single tasks and mixed tasks. From the
table, we can see that despite its small model size, our method achieved the best
evaluation scores in almost all the tasks compared to the MLT methods. Note
that Piggyback1 initially started training on the single task of inpainting, while
Piggyback2 started on the semantic segmentation. That is why both achieved
the best score on each of these tasks, respectively. Besides, our proposal presents
comparable results with the strong baseline (Single), even though its model size
is the biggest (more than five times bigger). On the other hand, Piggyback has
the smallest model size. However, it cannot learn mixed task.
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Between the proposed method and SGN, the performance of most of the
tasks was lower in SGN than in our proposed method in learning of multiple
tasks and mixed tasks. One of the possible reasons is that CCAM are inserted
on only three parts of the whole network, which is expected to make it hard
to adopt the network to heterogeneous image translation tasks, such as style
transfer and semantic segmentation. In addition, SGN uses Sigmoid functions
to generate attention maps and the output values of attention maps are limited
from 0.0 to 1.0, which is expected to restrict the adaptability of the network for
various kinds of tasks. On the other hand, in our network, the combination of
Instance Normalization and FiLM layers (IN+FiLM) without Sigmoid functions
are inserted after all the convolutional layers except the last layer. Moreover,
compared with EncIN, in which the encoder part uses no FiLM but standard
non-conditional INs, the proposed network outperformed EncIN on all the tasks.
Therefore, we can conclude that IN+FiLM should be used after all the convolu-
tional layers except the last layer regardless of encoder and decoder parts.

5 Conclusions

In this work, we performed learning of multiple different image translation tasks
and their mixed tasks with the single FiLM-based network. The experimen-
tal results showed that mixed-task learning using synthesized training images
of mixed tasks is possible in addition to learning of multiple individual tasks.
Furthermore, it was found that the objective space of those expressions could
be complemented by changing the task conditional vector during inference,
even though the intermediate representation of each task and the mutual tasks
between multiple tasks were not learned. We also compared the proposed method
with other baselines and showed its effectiveness.

In future work, we plan to add more tasks such as various kinds of image
domain translation tasks and mix them. We aim to build a more practical net-
work and task mixing by verifying learning of mixing of various tasks. In addition,
we like to reduce task interference and improve accuracy by devising the net-
work architecture. We will examine the effectiveness of the proposed network for
image classification tasks as well. Extending the method to incremental learning
is also one of the interesting topics.
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