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ABSTRACT

Hand segmentation is usually considered a pixel-wise binary classification problem, where the foreground hand
is meant to be recognized in an input image. However, we envision that finger-level hand segmentation is more
useful for applications like hand gesture and sign language recognition. Therefore, in this paper, we compare five
state-of-the-art (SOTA) real-time semantic segmentation methods for the task of finger-level hand segmentation.
To do that, we introduce two subsets consisted of 1,000 images manually annotated pixel-wise selected from new
proposed datasets of hand gesture and world-level sign language recognition. With these subsets, we evaluate
the accuracy of the recent SOTA methods of DABNet, FastSCNN, FC-HardNet, FASSDNet, and DDRNet.
Since each subset has relatively few images (500), we introduce a simple yet effective loss function to train with
synthetic data that includes the same annotations. Finally, we present a real-time performance evaluation of the
five algorithms on the NVIDIA Jetson family of GPU-powered embedded systems, including Jetson Xavier NX,
Jetson TX2, and Jetson Nano.
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1. INTRODUCTION

Hand segmentation is a dense prediction problem that detects every pixel that belongs to a hand (binary seg-
mentation), where in some cases, these are disambiguated among left and right hands.1 Several works employ
hand segmentation as a preprocessing step for other tasks, such as hand gesture recognition and human behavior
analysis.2 However, some specific applications like hand gesture recognition might be easy to perform if the hand
segmentation is achieved at the finger level. For example, the differences between gestures based on one or two
fingers are clear if we use finger-level hand segmentation masks. On the contrary, the conventional left and right
hand detections are not enough to exhibit distinct characteristics of each gesture, as shown in Fig. 1. Therefore,
in this paper, we manually annotate pixel-wise finger labels of 1,000 images selected from two datasets of hand
gesture and sign language recognition, respectively. With these datasets, we compare state-of-the-art (SOTA)
segmentation algorithms for finger-level hand segmentation. Besides, since each subset has relatively few images,
we introduce a simple yet effective loss function to train with a huge synthetic dataset3 that includes the same
finger-level annotations.

In order to use finger-level hand segmentation as a preprocessing step, faster than real-time performance
is necessary for time-critical tasks. Common techniques used to fulfill the real-time requirements for semantic
segmentation include network quantization, network compression, factorization of standard convolution, and
efficient redesign of CNN-based architectures. This paper mainly focuses on the last, which is a common technique
used in the most recent SOTA for real-time semantic segmentation. Thus, we compare the real-time performance
of five algorithms: DABNet,4 FastSCNN,5 FC-HardNet,6 FASSDNet,7 and DDRNet.8 Besides, we also test their
capability to be implemented on low-power consumption embedded systems, such as Jetson Nano.
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Figure 1. Comparison between one and two finger-based gestures using hand segmentation at finger level. The first
and third rows show the RGB input and the finger-level hand segmentation, respectively. The second row shows the
conventional right&left hand segmentation as a baseline.

2. RELATED WORK

In recent years, hand segmentation has being an active research topic.9 Some of its main applications include
hand gesture recognition (HGR),10,11 RGB-based hand pose estimation,3 and analysis of egocentric interactions.1

For example, in10 and,11 the HGR is achieved in two steps; the first is focused on hand segmentation, while the
second uses RGB and hand masks as input for the final classification. Binary hand segmentation has been
extensively used as a preprocessing step for hand pose estimation. The authors of12 proposed an end-to-end
trainable 3D hand pose estimation framework based on foreground region supervision and 2D skeletal joint
estimation. Since the output is a 3D mesh, it is possible to obtain approximated hand segmentation masks. On
the other hand, it has been demonstrated that a good hand segmentation mask can be sufficient for recognizing
actions and activities involving the hands in an egocentric visions. Thus, several methods rely on robust hand
segmentation methods before activity recognition.1 The recent work of13 advances the SOTA accuracy of binary
hand segmentation by proposing a Bayesian CNN-based model adaptation framework that can generalize between
different domains. However, none of the previous works explore hand segmentation at finger level, as proposed
in this paper.

3. REAL-TIME SEMANTIC SEGMENTATION

High-accuracy semantic segmentation methods usually rely on maintaining high-resolution features while apply-
ing convolution with large dilations rates to enlarge receptive fields.14,15 However, the expensive computational
resources required for these practices, in conjunction with the heavy pyramidal pooling techniques, limit the
algorithms to achieve faster performance than real-time. Conversely, real-time segmentation algorithms build
upon lightweight encoder-decoder6,7 or bilateral pathway5,8 architectures that usually employ compact pyrami-
dal pooling modules and depth-wise convolutions.4 In this way, we analyze five of the most efficient and balanced
algorithms between accuracy and speed.

DABNet4 builds upon Depth-wise Asymmetric Bottleneck modules designed to alleviate the dense number
of parameters required in huge architectures. Each module employs depth-wise factorized convolutions with a
bottleneck structure, which can extract local and contextual information jointly without a need for a pyramidal
pooling module. The compact structure and the input resizing instead of convolving significantly reduce the
parameters of the network.

FastSCNN5 is based on a bilateral pathway aimed to combine spatial detailed high-resolution features and
deep features at lower resolution. The two branches share the first convolutional layers which maintain relatively
high-resolution features by only using depth-wise separable convolutions. The low-resolution path uses inverted



residual bottleneck blocks with a pyramidal pooling module (PPM) from PSPNet.14 The fusion of both paths
is based on a simple addition of features. This architecture presents the least number of parameters within the
SOTA methods analyzed in this paper.

FC-HardNet6 is a classic encoder-decoder architecture without pyramidal pooling and complex fusion mod-
ules. Its core contribution relies on the Harmonic Dense Blocks (HDBs), which are specifically designed to address
the memory traffic problems and the density of computations from the dense blocks proposed by DenseNet. Each
HDB reduces the layer connections and balances the input/output channel ratio based on the width of each layer
according to its connections. This architecture focuses on improving the throughput of the feature maps by
avoiding unnecessary DRAM accesses.

FASSDNet7 employs a similar encoder-decoder architecture based on HDBs. However, it includes two key
modules aimed to design a high-performance decoder. Dilated Asymmetric Pyramidal Fusion (DAPF) increases
the receptive field on the last encoder by combining features at different scales. The second module, Multi-
resolution Dilated Asymmetric (MDA), fuses and refines detail and contextual information from the early and
deeper stages of the network. Both modules are designed to keep a low computational complexity by using
asymmetric dilated convolutions.

DDRNet8 is a recently proposed approach based on a two-pathway network. Its architecture is similar
to FastSCNN with relatively high- and low-resolution branches. However, there are one-by-one corresponding
relations between both resolution paths, defined with a bilateral fusion. This fusion includes a high-to-low
and low-to-high fusion, emulating the different resolution combinations of complicated architectures. Besides, a
new Deep Aggregation Pyramid Pooling Module (DAPPM) is introduced as an improvement of PPM. So that,
DAPPM presents more (x4) context size combinations than the original PPM.14 Note that this method uses
deep supervision by adding an auxiliary loss at the middle of the architecture.

4. FINGER-LEVEL HAND DATASETS

Only a few available hand datasets include annotations other than binary pixel labels. For instance, EgoHands,16

a large egocentric hand dataset for activity recognition, includes a subset of 4800 pixel-wise annotated images.
The annotations include labels from 4 classes regarding own and others’ left and right hands. Similarly,11 pre-
sented 500 frames with left and right hand annotations from videos of gestures designed for touchless screen
interactions. WorkingHands17 recently presented the largest dataset with left and right segmented hands, com-
prising more than 400 thousand frames of ”hands using tools” captured by thermal and RGB-D cameras. In
contrast, the rendered hand pose dataset (RHD)3 contains 43,986 synthetically generated images for hand pose
estimation. RHD is the only publicly available dataset with finger-level pixel-wise annotations to the best of our
knowledge.

Due to the lack of real-world finger-level annotated frames, we annotate two subsets from available datasets.
We refine the 500 frames of the IPN hand dataset18 chosen from,11 which come from hand gesture videos with
interactions of touchless screens. Besides, we define a subset of 500 images from the recently proposed Word-Level
American Sign Language (WLASL) video dataset.19 We manually choose the most representative frames that
show different finger positions and a significant variety of backgrounds and subjects. We annotate 13 classes,
which include palm and five fingers per hand and the person’s shape.

5. EXPERIMENTS

We evaluate all methods using the RHD3 synthetic dataset and the annotated subsets of IPN hand18 and
WLASL19 datasets. We use the standard data split of RHD, which includes 41,258 images for training and 2,728
for testing. We randomly choose 400 images for training and 100 for testing for each subset. The performance
evaluation is measured in mean intersection-over-union accuracy (mIoU) and frames per second (FPS). Finally,
we report the number of parameters and computational complexity in GFLOPs.



Table 1. Quantitative results (mIoU)

Method Params. FPS RHD IPN WLASL

DDRNet 5.73M 188.6 69.03 64.45 62.95

FASSDNet 2.85M 121.4 68.50 64.19 62.23

FC-HarDNet 4.12M 129.0 68.59 63.81 61.56

DABNet 0.76M 171.0 61.22 56.89 57.30

FastSCNN 1.14M 259.7 55.05 55.33 55.00

Table 2. Results of IPN subset with different training strategies

Method Synthetic Scratch Fine-tune cJointly αJointly

DDRNet 32.21 50.56 61.48 62.25 64.45

5.1 Training Strategies

Since the subsets of annotated real-world images have relatively few images, common transfer learning techniques
are beneficial in our experiments. The most straightforward strategy consists of training with a huge dataset
to transfer the learned knowledge by fine-tuning the model with the small target subset. On the other hand,
previous works have demonstrated that high accuracy can be achieved by jointly training on real and synthetic
data.20 Therefore, we propose a simple loss function to train the hand segmentation models with the RHD
dataset and each real-world subset. The final loss is defined as a weighted sum of the desired semantic loss
function, which can be expressed as Lf = Lr + αLs, where Lf , Lr, Ls represent the final loss, real-world-based
loss, and the synthetic-based loss, respectively, and α denotes the weight assigned to regulate the contribution
of Ls, which is empirically set as 0.4 in this paper.

5.2 Implementation Details

We use Python 3.6 and PyTorch 1.5 for the experiments. For a fair comparison, the same training setting
is used for all models, where Stochastic Gradient Descent (SGD) is used as the optimizer. We employ the
“poly” learning rate strategy and the cross-entropy loss by following the online bootstrapping strategy. Data
augmentation consists of random horizontal flip, random scale, and random crop with 480 × 480 crops. The
RHD images were rescaled to 640× 640, while the IPN and WLASL were processed at the original resolution of
640 × 480. We trained all models with batch size 32 for 90,000 iterations when using RHD or the joint training
(real+synthetic data), and 40,000 iterations when training the subsets from scratch. The fine-tuning from RHD
models were trained for 30,000 extra iterations.

5.3 Experimental Results

Quantitative results of RHD, IPN, and WLASL test sets are shown in Table 1. FPSs were measured on an
Intel Core i7-9700K desktop with a single NVIDIA GTX 1080Ti GPU and 64 GB of RAM. From this table,
we can see that DDRNet achieves the highest results. Interestingly, FASSDNet presents better results on the
real-world subsets than FC-HarDNet. In general, we can assume that the top 2 and 3 accuracy correspond to
these methods. Fig. 2 qualitatively shows the superiority of the top 3 approaches over DABNet and FastSCNN.
From a per-class evaluation, we found that the person class is the easiest to recognize, as shown in Fig. 2. In
contrast, the left thumb and right medium fingers are, in general, the most difficult classes for IPN and WLASL
datasets, respectively. Furthermore, Table 1 reaffirms that the number of parameters does not correlate with
the inference speed. Being FastSCNN the fastest network with about 260 FPS. Note that all methods fulfill the
requirement for a preprocessing step since they surpass the real-time performance.

The IPN and WLASL results were obtained following the joint training (αJointly). Table 2 shows the
superiority of our proposal concerning different training strategies. αJointly overcomes the conventional joint



Figure 2. Qualitative results with a frame from the WLASL subset.

Table 3. Inference speed (FPS) on the NVIDIA Jetson family

Method GFLOPs Storage Xavier TX2 Nano

DDRNet 5.55 22MB 159.35 55.02 28.33

FASSDNet 6.60 11MB 60.0 26.8 12.11

FC-HarDNet 5.19 16MB 83.44 46.31 17.54

DABNet 6.12 3MB 30.5 10.9 4.81

FastSCNN 1.03 4.5MB 204.04 59.68 30.51

training (cJointly), which equally treats the losses of synthetic and real-world samples. We can see that the
model trained only with the RHD dataset (Synthetic) is not reliable on real-world data (obtaining only 32% of
mIoU). On the other hand, the fine-tuned strategy significantly overcomes the model trained from scratch. In
this way, we prove that synthetic data is beneficial when the real-world dataset is relatively small.

Finally, Table 3 shows the efficiency results of each method when implemented on GPU-powered embedded
systems. We employ the TensorRT tool for better optimization in the GPU. The inference speed was calculated
from the average FPS rate of 10,000 iterations with 640× 480× 3 images. The same resolution is used to obtain
the computational complexity (GFLOPs). From Table 3, we see that only FastSCNN is capable of achieving
real-time performance on the three embedded systems. Interestingly, DABNet presents the worst inference speed,
while its model requires the smallest memory storage.

6. DISCUSSION AND CONCLUSION

Finger-level hand segmentation is more challenging than binary hand segmentation since multiple classes with
significantly unbalanced sizes must be handled. Thus, semantic segmentation methods need to pay special
attention to detail and contextual information on small classes, such as pinky and thumb fingers. In this paper,
we particularly analyze five approaches designed to fulfill the mentioned requirements. Our analysis suggests
that, the encoder-decoder methods (FC-HarDNet and FASSDNet) are slower but more accurate than the two-
pathway approaches (FastSCNN and DDRNet). However, the bilateral fusion of DDRNet shows an effective
solution. On the other hand, the multi-resolution-input structure of DABNet presents several downsides on
accuracy and efficiency. The real-time requirements are achieved by all methods implemented on a common
GPU. For the embedded systems, only the two-pathway approaches can fulfill them. Nonetheless, the Jetson
Nano presents a challenge that the current methods cannot overcome.

In summary, we took a deep look into the possibility to achieve faster than real-time hand segmentation at
finger-level, introduced two real-world subsets to carry full supervision, proposed a simple loss function to employ
synthetic data, and identified the current SOTA methods that can also be applied on embedded systems.
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