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Abstract— Touchless in-car devices controlled by single and
continuous finger gestures can provide comfort and safety on
driving while manipulating secondary devices. Recognition of
finger gestures is a challenging task due to (i) similarities
between gesture and non-gesture frames, and (ii) the difficulty
in identifying the temporal boundaries of continuous gestures.
In addition, (iii) the intraclass variability of gestures’ dura-
tion is a critical issue for recognizing finger gestures intended
to control in-car devices. To address difficulties (i) and (ii),
we propose a gesture spotting method where continuous gestures
are segmented by detecting boundary frames and evaluating
hand similarities between the start and end boundaries of each
gesture. Subsequently, we introduce a gesture recognition based
on a temporal normalization of features extracted from the
set of spotted frames, which overcomes difficulty (iii). This
normalization enables the representation of any gesture with
the same limited number of features. We ensure real-time
performance by proposing an approach based on compact deep
neural networks. Moreover, we demonstrate the effectiveness of
our proposal with a second approach based on hand-crafted fea-
tures performing in real-time, even without GPU requirements.
Furthermore, we present a realistic driving setup to capture a
dataset of continuous finger gestures, which includes more than
2,800 instances on untrimmed videos covering safety driving
requirements. With this dataset, our both approaches can run at
53 fps and 28 fps on GPU and CPU, respectively, around 13 fps
faster than previous works, while achieving better performance
(at least 5% higher mean tIoU).

Index Terms— Hand gesture recognition, gesture spotting,
human-computer interaction, automotive user interfaces.

I. INTRODUCTION

HAND gesture recognition (HGR) is an essential part
of human-computer interaction. In particular, touchless

automotive user interfaces (AUI) controlled by hand and
finger gestures can provide comfort and safety on driving
while manipulating secondary devices like audio and naviga-
tion systems [1]–[3]. Besides, some essential in-car devices
can also be controlled with finger gestures. For example,
the wipers can be activated by detecting a denial gesture
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performed with one finger. Furthermore, continuous finger
gestures are convenient for AUI, since they allow multiple
commands on different functions. For instance, the audio
control of ’rewind’ can be activated with an isolated ’flicking-
left’ gesture, while the ’skip to the start’ function can be
assigned to a combination of two continuous ’flicking-left’
gestures. The main advantages of AUI controlled by finger
gestures include lower visual load, nonintrusive performance,
and high-level user acceptability [4]–[7].

Finger gestures can be dissected on three motion states:
preparation, nucleus, and retraction [8]. The message in
a finger gesture is mainly contained in the nucleus state,
which presents the most representative appearance and motion
attributes of the gesture [9]. Transitions between motion states
can be considered as boundaries of the gesture’s nucleus.
These boundaries exist even between continuous nucleus
states, as shown in Figure 1. Thus, it is possible to rely on
boundary detection for spotting the nucleus of finger gestures.
Still, it is not easy (i) to detect boundary frames because they
are similar to other gesture frames, and (ii) to identify a pair of
boundary frames that correspond to the start and end frames
of continuous gesture. These problems may also be observed
in other gesture recognition applications. However, these are
critical for continuous finger gesture recognition intended to
control AUI, as illustrated in Figure 1. In addition, a frequent
gesture recognition difficulty (iii) is the intraclass variability
of gestures’ duration, as can be seen in Figure 1. This issue
is crucial for finger gesture recognition due to there are
gestures significantly longer than others. Besides, preparation
and retraction states might share similarities with the nucleus
of some flicking gestures. For instance, flicking-down gestures
look partially similar to the retraction state.

In this paper, we propose a continuous finger gesture
spotting and recognition method. Our gesture spotting method
resolves difficulties (i) and (ii) by detecting boundary frames of
gesture’s nucleus when gestures are performed continuously,
as shown in the top row of Figure 1. We evaluate the hand
similarities between the start and end frames of each gesture
under the assumption that a gesture’s nucleus starts and ends
with a similar position and pose of the hand. Note that this
assumption is particularly valid for finger gestures intended to
control AUI, such as flicking gestures illustrated in Figure 1.
However, it is not applicable in all the wide range of possible
hand gestures. We name Similarity Check to the evaluation of
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Fig. 1. Example of the properties of continuous and isolated finger gestures. The top row shows a sequence of two continuous gestures (flicking-left). The
bottom row shows a sequence of an isolated gesture (denial). The red arrows illustrate the finger motion. Frames that share strong similarities are highlighted
in blue. Note the duration inconsistency of both gestures; denial takes roughly twice as the time of flicking-left.

Fig. 2. Comparison of continuous HGR based on their gesture spotting approach. (a) Gesture recognition is applied frame by frame. Gesture spotting
is based on a linking process using confidential scores [16], [17]. (b) Gesture spotting and recognition based on temporal sliding windows [18], [19].
(c) Classification between gesture and non-gesture frames. Gesture recognition is performed on gesture frames only [20]–[22]. (d) Our proposal is based on
boundary/non-boundary detection. Similarity check evaluation is required for defining target frames employed for gesture recognition.

hand similarities that employs features extracted from detected
boundary frames, as highlighted in Figure 2 (d). For gesture
recognition, we overcome difficulty (iii) by using a temporal
normalization of features extracted from the set of spotted
frames. We merge these frames into a limited number of
features able to represent the gesture’s nucleus. Thus, we can
also overcome the duration inconsistency that may appear
between different gestures.

Based on our core idea, we present two different alternatives
for reaching real-time performance: 1) a deep-network based
approach oriented to exploit a GPU if enabled; 2) a traditional
approach with hand-crafted features which can perform when
only the CPU is available. For (1), we propose a framework
employing compact deep neural networks trained with a
triplet-loss function [10]. This function is suitable for discrim-
inating boundary frames, since it learns to decrease the Euclid-
ean distance of true boundaries embeddings while increasing
that between false-positive boundary frames. For (2), we use
histogram of oriented gradients (HOG) [11] and histogram
of optical flow (HoOF) [12] features classified with Random
Forest (RF) [13] to detect boundary frames.

To validate our method, we propose a realistic setup for
finger gesture recognition, which considers the driving dis-
tractions identified by the National Highway Traffic Safety
Administration (NHTSA) [14]. We define eight gestures which
are natural to perform by keeping both hands on the steering
wheel, and demand a low cognitive load. With this setup,
we capture a dataset of continuous finger gestures with more
than 2,800 instances on untrimmed videos.

In summary, the main contributions of our work include:
• A novel finger gesture spotting method based on bound-

ary detection, which introduces a Similarity Check
between detected boundaries (Section III-B).

• A gesture recognition approach based on a temporal
normalization of features extracted from the set of spotted
frames (Section III-C).

• A realistic setup for finger gesture recognition designed
to capture a dataset of continuous gestures on untrimmed
videos.

This work is an extension of the conference paper pre-
sented on MVA2019 [15], which introduces our deep-network
approach (Section IV). The novel contributions of this paper
are threefold:
• A real-time finger gesture spotting and recognition based

on boundary frame similarities using hand-crafted fea-
tures capable of working on CPU (Section V).

• A detailed description of the setup designed to cover
safe driving requirements when controlling touchless AUI
(Section VI).

• Performance comparisons of our proposals with previous
methods for real-time gesture recognition (Section VII).

II. RELATED WORK

Most of the HGR state-of-the-art approaches are applied to
isolated gestures, assuming that only one gesture is included
in each video of the dataset [23]–[26]. Based on the method
for obtaining characteristics of gestures, there exist two
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groups of HGR approaches: hand-crafted and deep-network
based [27], [28]. Hand-crafted methods primarily employ
HOG and HoOF features [3], [20], [27], [29]. For instance,
Ohn-Bar and Trivedi [3] evaluated several variations of HOG
and classifiers to recognize hand gestures for automotive inter-
faces. Joshi et al. [20] used HOG features for classifying upper
body gestures with Random Forest (RF). Borghi et al. [29]
employed HoOF and support vector machines (SVM) for
modeling the gestures in a spatio-temporal feature space.
Similarly, for our hand-crafted based approach, we propose
to merge a combination of HOG and HoOF features from
limited temporal sections to model the motion and appearance
properties of finger gestures.

Previous works focused on learned feature extraction meth-
ods tend to use deep convolutional neural networks (CNN)
and 3D CNN, as presented on the ChaLearn Look At Peo-
ple (LAP) gesture recognition challenge [30]. ChaLearn LAP
is based on two datasets: Isolated and Continuous Gesture
Dataset (IsoGD and ConGD) [31]. The winners of the last
IsoGD challenge, Miao et al. [24], employ a well-known 3D
CNN model called C3D [32] to extract features from RGB,
depth, and flow fields. They propose a feature level fusion
within each modality, and use SVM for classifying the fused
features. One year after that challenge, Narayana et al. [25]
overcome the results by proposing a late-fusion approach from
12 different channels, comprising focus regions of global,
left and right hand, including modalities of RGB, depth, and
flow. In contrast to those methods, we focus on rendering
the network compact while maintaining acceptable accuracy.
Therefore, we build our approach on a compact CNN model
originally designed to perform on mobile devices. For gesture
recognition, we include a few extra convolutional layers to
reuse feature maps used in the gesture spotting.

On the other hand, ConGD challenge participants [30]
and recent continuous HGR works also use CNN and 3D
CNN with multi-modal data inputs [16], [21], [22], [33], [34].
Based on the gesture spotting approach, these methods
can be primarily divided into three types, as shown in
Figure 2 (a), (b), and (c).

A. Linked Frame-Wise Classification

Proposed by Singh et al. [16], this approach classifies ges-
tures frame by frame. Subsequently, gesture spotting is based
on a process of linking the frame’s confidential scores to lim-
itate continuously detected gestures, as shown in Figure 2 (a).
Similarly, Kalogeiton et al. [17] proposed to use the SSD
(Single Shot MultiBox object Detector) [35] for constructing
‘temporal action tubes’ from the spatial frame-level detections.
One critical issue of this approach comes when boundary
frames are similar to gesture frames. In that case, contin-
uous gestures might be misrecognized as a single isolated
gesture. Figure 1 illustrates this issue, where two continuous
flicking-left gestures (top row) might be misrecognized as a
single denial gesture (bottom row).

B. Sliding Windowing

Hand gestures are directly recognized with temporal slid-
ing windows [18], [19]. In this approach, gesture recog-
nition and spotting are achieved simultaneously, since the

temporal window length determines the gesture location.
For instance, C3D [32] can be used to recognize ges-
tures using non-overlapped sliding windows, as the exam-
ple shown in Figure 2 (b). Thus, a gesture is spotted by
the temporal window that recognizes it correctly. Recently,
Zolfaghari et al. [18] proposed a 3D CNN method with tem-
poral pooling using sliding windows with 50% overlap. They
propose to update the prediction of 3D CNN every window,
by using a working memory. A drawback of this approach is
the fixed-length windows, which limit its performance when
gestures with significant length variations continuously appear.

C. Binary Classification

This approach aims to binarize each frame to ges-
ture or non-gesture frames in order to extract the frame
sequence used for gesture recognition [20]–[22]. As shown
in Figure 2 (c), consecutive gesture frames are feed to the
recognition step, while non-gesture frames are discarded.
For instance, Joshi et al. [20] proposed Random Forest to
distinguish between gesture and non-gesture frames using 3D
joint-based and appearance features. In a recent approach,
Kopuklu et al. [22] propose a hierarchical structure of 3D CNN
architectures to detect and recognize continuous hand gestures.
The detection discriminates between gestures and non-gestures
using a shallow 3D CNN model, while the recognition is
carried out by a deep 3D CNN using weighted average filtering
to take a single-time activation per gesture. A variation of the
binary classification evaluates specific properties of boundary
frames for performing the gesture spotting [36], [37]. For
instance, in [37]–[39], the quantity of movement (QOM) [40]
is employed to determine gesture boundaries by detecting
motionless from depth frames.

Binary classification is a simple yet effective approach
commonly used on several works, including the winners of the
ChaLearn LAP ConGD challenge [21], [22], [36]–[39], [41].
However, the binarization process might extract a sequence,
including multiple gestures because of any non-gesture frames
might not be detected between continuous gestures. Con-
trastively, false-positive errors of boundary frame detection
may result in isolated gestures unintentionally segmented
in several parts. Therefore, we overcome these issues by
proposing a Similarity Check, which evaluates the similarities
between the start and end boundary frames of the gesture’s
nucleus, as shown in Figure 2 (d).

III. PROPOSED METHOD

The overview of our proposed framework is illustrated
in Figure 3. Let It be the current frame and also the end
boundary of a gesture. The gesture consists of a sequence
of S + 1 frames {It−S, . . . , It−1, It }, where It−S represents
the start boundary frame. The goal of our proposal is to
recognize the gesture that takes place between It−S and It

from a sequence of an arbitrary number of frames, which
includes continuous gestures. Our proposal can be divided
into three stages: feature extraction, gesture spotting, and
gesture recognition. The basic process flow consisting of these
three stages is shared by our deep-network and hand-crafted
based approaches. Nevertheless, the differences among these
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Fig. 3. Overview of our proposal. Based on the feature extraction method,
the framework has two approaches. For the deep-network approach (path
shown with the red arrows), the hand location is regressed altogether with the
boundary classification, while for the hand-crafted features approach, the hand
is detected before feature extraction (path shown with the blue arrows). With
these features, we classify between boundary and non-boundary each frame of
the input sequence. For gesture spotting, we propose to evaluate similarities
between two detected boundaries. Hence, the gesture is spotted if the similarity
check between the start and end boundaries is successful. The gesture class is
recognized based on a temporal normalization of the features extracted from
the set of spotted frames.

TABLE I

DIFFERENCES AMONG OUR BOTH APPORACHES

approaches are resumed in Table I and detailed in the following
subsections.

A. Feature Extraction

We handle two different types of hand features for ges-
ture spotting and recognition, respectively. Similarity features
(Xsm) are used for gesture spotting, while gesture features
(Xgs) for gesture recognition. The extraction process of both
hand features is carried out differently for each of our two
approaches, as shown in Table I. The deep-network approach
can simultaneously detect the hand and extract its gesture fea-
tures, as proposed in SSD [35]. Besides, we use a triplet-loss
function [10] for learning the similarity features, path shown
with the red arrows in Figure 3. For the hand-crafted based
approach, we apply a simple hand detection process based on

Algorithm 1 Continuous Gesture Spotting Process
Input: Boundary classification score ( p), similarity

(Xsm) and gesture features (Xgs) of each frame
(Ii ) of the input sequence

Output: Gesture features from the set of spotted frames
1 Initialize a boundary clip (R← ∅), a boundary clip’s

working memory (WR ← ∅), and a features’ working
memory (WX ← ∅)

2 if p > 0.5 then
3 R← (p, Xsm)

4 else
5 if length(R) ≥ 2 then
6 WR ← R

7 if length(WR) > 0 then
8 WX ← Xgs

9 if length(WR) ≥ 2 then
10 for m = 1 to length(WR)− 1 do
11 star t ← Xsm of max(p ∈ WR(m))
12 for n = m + 1 to length(WR) do
13 end ← Xsm of max(p ∈ WR(n))
14 if Dist (star t, end) > T h then
15 CLEAR: WR(1 : n − 1)
16 OUTPUT: WX (istart : iend )

17 CLEAR: R, WR & WX if{length(WX ) > T }

the hand motion. Subsequently, the appearance and motion
characteristics of the hand are defined by HOG and HoOF
features, path shown with the blue arrows in Figure 3.

B. Gesture Spotting

This process is achieved by two steps: boundary classifica-
tion and Similarity Check. As shown in Figure 3, the boundary
classification is performed frame-wise, while the similarity
check is only applied when two potential boundaries are
detected. We define the Similarity Check as the Euclidean
distance between similarity features. Hence, the gesture is
spotted if the Euclidean distance between the start and end
boundary frame’s features is greater than a similarity thresh-
old (T h). The complete process of our continuous gesture
spotting proposal is detailed in Algorithm 1. The inputs are
the previously extracted features (Xsm and Xgs), and the
probability score (p) of the boundary classification from each
frame (Ii ). Firstly, to avoid isolated false-positive detections,
we define a boundary just if at least two consecutive boundary
frames are detected (lines 2-3 of Algorithm 1), we called
this a boundary clip (R). After detecting the first boundary
clip (lines 5-6), we store Xgs of consecutive non-boundary
frames in a working memory (lines 7-8). Subsequently, when
a second boundary clip is detected (line 9), the Similarity
Check is applied using the similarity features corresponding
to the boundary frames that have the highest probability score
(lines 11 and 13, respectively). Finally, we spot a gesture
if Dist (star t, end) > T h, where star t and end represent
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TABLE II

INPUTS FOR ALGORITHM 1 FROM EACH APPROACH

the Xsm of frames with max(p) from the first and second
boundary clips, respectively. The output will be the gesture
features corresponding to all frames between the start and
end temporal boundaries (line 16). Otherwise, the boundary
clips are kept in the working memory (WR) until the duration
between the first boundary clip and the current frame is no
longer than T frames (line 17). We have set T = 45 based
on the longest gesture from our dataset. Note that since we
use different features for our both approaches, the inputs of
Algorithm 1 also differ. Table II presents the inputs for each
method, which are further detailed in the following sections.

C. Gesture Recognition

As shown in the upper part of Figure 3, we adopt a temporal
normalization of features extracted from the set of spotted
frames, which is used to represent each spotted gesture. This
normalization consists of summarizing the whole gesture into
a limited number of temporal sections. Given that, gestures
with different duration can be defined with the same amount
of features while maintaining its temporal order. Hence, all
the spotted frames (S + 1) are merged into K temporal
sections, which are further concatenated to represent the whole
gesture. As shown in Table I, the way to merge the extracted
features differs based on the approach. For the deep-network
based approach, we apply a temporal stacking of features
before a temporal pooling on K sections. Afterwards, we use
softmax for gesture recognition. For the hand-crafted based
approach, we concatenate HOG and HoOF features from each
frame before applying a blending function on K sections. The
concatenated sections are finally classified using RF. Note that
K is a tunable parameter which defines the ideal length for
representing all gestures from the dataset.

In the next two sections, we detail specific information for
each of our two approaches.

IV. DEEP-NETWORK BASED APPROACH

A. Feature Extraction

The overview of the architecture for feature extraction and
boundary classification is shown in Figure 4. We build our
proposal on the SSD detector [35], which classifies boundary
frames and regresses the bounding box of the hand in a
single-stage architecture. To ensure real-time performance,
we use a faster version named SSD lite [42], which implements
a compact CNN architecture called MobilenetV2 as a base
network. This architecture can perform on real-time even on

Fig. 4. Overview of the proposed architecture for feature extraction and
boundary classification from the deep-network approach. We use the SSD
lite architecture [42], and we propose a few extra layers trained with the
triplet-loss function [10]. From the current frame, we extract convolutional
feature maps using MobilenetV2. Boundary classification and hand detections
are achieved by SSD lite. If a boundary frame is detected, we feed the
extracted feature maps into the extra layers to define an embedding vector.

mobile devices, since it exploits the depth-wise convolution
and introduces an inverted residual block of convolutions.
SSD lite includes 17 inverted residual convolution layers
(MobilenetV2 conv. layers colored in blue in Figure 4) and
three depth-wise convolution layers (SSD lite conv. layers
colored in purple in Figure 4) for bounding box regression
and boundary classification.

After boundary classification, we use a triplet-loss function
to learn features that can define the temporal boundaries.
The triplet-loss function [10] employs triplets of samples
(anchor, positive, negative) for training the network. Anchor
and positive samples are chosen from boundary frames, while
non-boundary frames refer to the negative samples. This loss
function aims to minimize the Euclidean distance between the
anchor and “difficult positive” samples, while penalizing that
between the anchor and “difficult negatives.” A difficult posi-
tive has a large Euclidean distance with the anchor. Conversely,
difficult negatives present a short distance, although they
belong from different classes. This phenomenon often occurs
when detecting boundary frames of finger gestures. Therefore,
we add a depth-wise convolution and a fully-connected layer
for learning embeddings capable of representing similarities of
boundary frames. Figure 4 shows these extra layers, colored
in red and orange, respectively. The triplet-loss is defined by:

L=
O∑

i

[|| f (Xa
i )− f (X p

i )||22−|| f (Xa
i )− f (Xn

i )||22−α
]

(1)

where α is a margin that is enforced between positive and
negative pairs from Xa (anchor), X p (positive), and Xn (neg-
ative) samples’ features, f (X) is the embedding of features X
in to a Q-dimensional Euclidean space, and O is the number
of samples per class in the batch. In our proposal, embeddings
are defined as:

ε = f (ψ(X)) (2)

where X refers to the feature maps obtained from the last
convolutional layer of MobileNetV2 (colored in electric blue
in Figure 4), and ψ(X) represents the two added extra layers
designed to learn the similarity features.
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B. Gesture Spotting

The gesture spotting is based on the similarity features
learned with the triplet-loss function, and the gesture features
obtained from the base network (in our case feature maps from
MobilenetV2). Therefore, as shown in Table II, the inputs of
Algorithm 1 are Xsm = ε, Xgs = X , and p as the output of
the softmax function used in the SSD lite architecture.

C. Gesture Recognition

Inspired by Zolfaghari et al. [18], we adopt a temporal
stacking of feature maps as the first step of gesture recognition.
The intuition behind the temporal stacking is that feature
maps may contain similar information in the same temporal
order, since the base network with shared weights is applied
frame-wise. In this way, we keep the temporal structure of the
features before merging them by a temporal pooling.

Let Xφj be the j -th feature map, j ∈ {1, 2, . . . ,C}, from the
φ-th frame, φ ∈ {t − S, . . . , t − 1, t}, where C is the number
of channels at the last convolutional layer of MobilenetV2,
and t is the current frame (the detected end boundary). Thus,
the temporal stacking is defined as a (M, N, (S+1)C) tensor:

X ′ = [
Xt−S

1 , Xt−S+1
1 , . . . , Xt−1

C , Xt
C

]
(3)

Subsequently, we apply adaptive average temporal pooling
to reduce the size of X ′ to (M, N, K C), where M = N is the
spatial size of the feature maps, and K C is the temporal size,
obtained by averaging features from non-ovelapped groups
of ((S + 1)C)/K C channels. In other words, we merge the
S + 1 spotted frames into K temporal sections. Temporal
pooled features are feed into two depth-wise convolutional
layers with batch normalization, ReLu6 non-linearity, and
dropout. Finally, the last fully-connected layer uses softmax
to determine the class of the spotted gesture.

V. HAND-CRAFTED BASED APPROACH

A. Feature Extraction

In order to ensure real-time performance, we define a simple
hand detection process based on the hand motion detected
around the steering wheel. Firstly, we predefine a steering
wheel template, and compute a dense optical flow (OF) frame-
wise. Subsequently, we define the hand location by finding the
region within the steering wheel template that concentrates the
hand motion uniformly during n frames. The results of hand
detection are approximately 99% with I OU@0.5 and n = 5.
Even with our simple approach, we can perform hand detection
correctly. Still, the few detection errors are attributed to issues
of motion registration by the optical flow approach.

After hand detection, we classify boundary frames based
on appearance and motion features, as shown in Figure 5. To
include additional temporal information to the hand features
(HOG and HoOF, respectively), we compose a feature vector
assembled from L + 1 per-frame features, given by:

V = [
Xt−L, . . . , Xt−1, Xt

]
(4)

where V is the assembled feature vector of the current
frame (t), and X represents either the HOG or HoOF features.

Fig. 5. Diagram of our boundary classification proposal based on hand-
crafted features. Principal component analysis (PCA) and Random Forest (RF)
are applied to the HOG and HoOF hand features. The final classification is
made by fusing confidential scores from both features.

Subsequently, we apply principal component analysis (PCA)
for dimensionality reduction. Thus, vectors from each type of
features (Vhog and Vhof ) are independently classified by RF.
Note that the independent feature vector extraction and clas-
sification of both features can be run in parallel, as shown
in Figure 5.

The final classification is made by a late fusion, where the
confidential scores from HOG and HoOF features are fused
to take the final decision. This fusion is defined by:

p = β ∗ phog + (1− β) ∗ phof (5)

where p is the merged score probability of a sample, which is
obtained from the probabilities phog and phof , corresponding
to the RF outputs using appearance and motion features,
respectively. Finally, the contribution of each feature is reg-
ulated by the parameter β.

B. Gesture Spotting

The gesture spotting takes only the hand’s appearance
features as similarity features. Contrastively, gesture features
are defined by the combination of appearance and motion
features, given by:

B = [Vhof , Vhog] (6)

where B is the concatenation of HoOF and HOG assem-
bled feature vectors (from Eq. 4), respectively. As shown
in Table II, the inputs of Algorithm 1 are Xsm = Vhog,
Xgs = B , and p which is obtained with Eq. 5. Note that, as for
similarity features, we do not consider the motion features
(Vhof ) because motion from the start and end boundary frames
are different given that the finger is moving towards opposite
directions at these two moments.

C. Gesture Recognition

Inspired by the work of Joshi et al. [20], we apply a tem-
poral normalization on the set of [B1, B2, . . . , BS+1] feature
vectors from the S+1 spotted frames. Thus, the whole gesture
is represented by a final feature vector, given by:

H ′ = [
H1, H2, . . . , HK

]
(7)

where K is the number of the defined temporal sections, and
Hi represents the features of the i -th temporal section, which
are calculated by ϕ([B1, . . . , BP ]), where ϕ is a blending
function, and P = (S + 1)/K is the number of feature
vectors corresponding to the temporal section sub-set. Given
that, all spotted frames are represented by a concatenation
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Fig. 6. Comparison of opposite gestures from three datasets. (a) swipe-right,
and swipe-left; (b) hand-up, and hand-down; (c) flicking-down, and flicking-
up. Each column illustrates a single hand gesture. The first, second and third
rows show the starting, middle and ending frames of each gesture motion,
respectively.

of K temporal sections. We tested (i) mean average filtering,
(ii) median filtering, and (iii) median vector as the blending
function. We experimentally found the best performance by
using (ii) median filtering as ϕ, which is defined as follows:
ϕ(Bi )=

[
med([B1

1, . . . , B1
P ]), . . . ,med([B D

1 , . . . , B D
P ])

]
(8)

where med represents the median value of each feature from
the sub-set, and D = length(B) is the dimension of the P
vectors corresponding to the i -th temporal section.

The gesture recognition is performed by classifying the final
vectors (H ′) using RF. The ideal number of trees and features
to consider when looking for the best split in our random
forest models were determined using the Out-of-Bag (OOB)
error rate in a combination of training and validation sets.

VI. DATASET

Most of the publicly available driver’s hand gesture datasets
are impractical for real-world applications due to 1) not
considering possible driving distractions induced by proposed
gestures; 2) including a huge set of different gestures making
difficult to memorize; 3) presenting a lack of continuous hand
gestures in untrimmed videos.

For instance, VIVA [3] and Nvidia [43] datasets consist of
videos with isolated gestures, including more than 20 different
gestures. Both present two different points of view of gestures
captured from a similar region of action, located close to the
center dashboard. Thus, the driver has to release his hand
from the steering wheel, be aware of the position where
the sensor will capture the motion, and try to remember
a gesture from the huge set. Moreover, these datasets lack
real-world continuous hand gestures. These issues arise a
need for suitable databases to evaluate real-world performance
under optimal safety conditions.

Gestures performed while handling the steering wheel may
be the solution of problems presented in previous datasets.
However, these gestures are limited to finger gestures making
the automatic temporal segmentation and classification more
challenging. For example, from Figure 6 (a-b) we can note
that opposed gestures clearly show differences in appearance

Fig. 7. Environment for data collection. The fixed camera location is
highlighted in blue.

and motion. On the other hand, flicking gestures with one
finger present the opposite situation, as shown in Figure 6 (c).

Given the limitations of existing datasets, we propose a real-
istic setup designed to capture a dataset considering the driving
distractions identified by the National Highway Traffic Safety
Administration [14]. Thus, the proposed gestures demand a
low cognitive load, and are natural to perform by keeping
both hands on the steering wheel. In addition, we choose a
near-infrared camera (NIR) to register the finger gestures. This
camera type allows developing vision-based systems that can
work in different light conditions.

We use an acA2040-90umNIR Basler ace USB 3.0 camera
to acquire NIR videos at 30 fps. The location of the camera
is close to the center dashboard, 30cm behind the steering
wheel with a positive angle of 16 degrees. We simulate two
driving environments differing only on the steering wheel
dimensions, employing a 278 mm (shown in Figure 7 (a))
and 380 mm wheel diameters, respectively. Twenty subjects
participated in data collection over three different sessions.
Subjects recorded gestures with their right hand starting and
ending from a neutral position (full steering wheel grip)
located in three different spots marked in the steering wheel,
as shown in Figure 7 (b). Participants were instructed to
perform continuous gestures one right after the other before
returning to the neutral position, as shown in the top row of
Figure 1. As shown in Figure 8, we define eight finger gestures
that can be divided into two groups: flicking (down, left,
right & up) and indications (circle, denial, open & release).
The size of each frame was normalized to 640× 480 pixels,
8-bit depth.

In total, our dataset comprises more than 2,800 instances.
We randomly split the data into training, validation, and testing
sets, with 1536 (192 per class), 432, and 928 instances, respec-
tively. The validation set consists of 336 and 96 instances per
flicking (84 × 4) and indications (24 × 4) classes, respec-
tively. Meanwhile, the testing set includes 704 (176 × 4)
and 224 instances (56 × 4), respectively. Note that the
amount of instances per class group is balanced only in
the training set, being about 60% more cases of flicking
gestures than those of indications. The complete dataset was
frame-wise annotated by specifying four motion states: rest,
preparation/retraction, boundary, and nucleus. Besides, bound-
ing boxes of driver’s hand were annotated for the training
set only.
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Fig. 8. Example of the eight classes of our dataset at first position (P1).
The temporal order of each gesture progresses from the top to bottom rows.
(a) Flicking-Down (FD), (b) Flicking-Left (FL), (c) Flicking-Right (FR),
(d) Flicking-Up (FU), (e) Circle (Ci), (f) Denial (De), (g) Open (Op), and
(h) Release (Re). Note that only the nucleus of each gesture is shown.

VII. EXPERIMENTAL RESULTS

A. Implementation and Training Details

1) Deep-Network Based Approach: We implement all
deep-network models using PyTorch 0.4 on a server with
i7-6850K CPU @ 3.60GHz, and a single Nvidia GeForce
GTX 1080. We train the SSD lite model using mini-batch
SGD with Nesterov momentum of 0.9, and mini-batches of
size 64. The initial learning rate was 0.01 and decayed by
0.98 every epoch. The MobileNetV2 architecture was reduced
25% from its original size. The triplet-loss network was trained
using Adam optimizer with a learning rate of 0.0001 with
exponential decay after 150 epochs, O = 32, and α = 0.2.
The extra depth-wise convolutional layer uses 120 1×1 filters,
and the fully connected layer includes 60 hidden neurons
(i.e., Q = 60). We experimentally set T h = 0.55. We vary
the value of K between the length of the shortest and the
longest gesture (in terms of the number of frames), we get the
best results with K = 8. The last two depth-wise convolutional
layers for gesture recognition, include 960 and 480 1×1 filters,
respectively. Given that, the stacked feature maps are pooled
to 10×10×1920. For all models, we train with image crops of
300×300 pixels using random crop augmentation, as proposed
by the original SSD method [35].

2) Hand-Crafted Based Approach: We conduct our experi-
ments on a PC with Intel Core i7-7820HK CPU @ 2.90GHz,
and 16GB of RAM. DIS optical flow [44] was used for hand
detection and HoOF calculation with parameters: θs f = 1,
θit = 12, θps = 8, and θov = 3 (pixels). The input frame
was downscaled by a factor of two before the OF application.
The hand region was resized to 24 × 24 pixels before HOG
application. Note that different RF models were trained based
on the three positions of the hand in the database. Thus,
the hand detection process was also in charge of locating the
hand within three specified zones. The rest of the parameters
were experimentally set as L = 2, β = 0.6, K = 8, and
T h = 0.52.

TABLE III

COMPARISON OF GESTURE SPOTTING RESULTS BETWEEN OUR
PROPOSAL VARIATIONS. RED HERE AND IN THE

FOLLOWING TABLES INDICATES THE

BEST PERFORMANCE

B. Ablation Studies

We evaluate the gesture spotting performance based on
the class-aware temporal Intersection-over-Union score (tIoU).
The score counts when the gesture label is correctly predicted,
and the IoU between predicted and ground-truth temporal
boundaries (starting and ending frames) is higher than a detec-
tion threshold. To specifically analyze the gesture recognition
performance, we present confusion matrices evaluated with a
class-agnostic tIoU using a threshold of 0.5 (tIoU@0.5).

We name DN trip-simil and HC simil to our deep-network
(Section IV) and hand-crafted (Section V) based proposals,
respectively. We also present results of DN simil, a variation
of our deep-network approach which excludes the triplet-loss
network. Hence, the Similarity Check is based on a hot-vector
extracted from the last 1 × 1 convolutional layer of the SSD
lite. Since this approach does not learn specific features for
evaluating the similarity, it is comparable to our HC simil
proposal, which uses only HOG features for this task.

We consider two baselines regarding deep-network and
hand-crafted based approaches: DN baseline and HC baseline.
DN baseline does not include the Similarity Check nor the
triplet-loss network. Thus, the gesture spotting is based on the
consecutive non-boundary frames detected between boundary
frames, which were classified by the SSD lite detector focused
on hands. Still, the gesture recognition process is as described
in Section IV-C, the same as that of DN simil and DN trip-
simil. On the other hand, the gesture spotting of HC baseline
is based only on non-boundary classification as described in
Section V-A, while the gesture recognition process is the same
as that of HC simil (Section V-C).

Table III presents the results of baselines and variations of
our approaches. Our intuition suggests, and the results confirm,
that the baselines would be weaker than our proposals, since
they cannot exclude false-positive boundary detections that
Similarity Check can. This ability is further improved by
learning the similarities of gesture boundaries, as proposed
in DN trip-simil. Deep-network based methods perform better
than those based on hand-crafted features. Besides, HC simil
significantly outperforms the results of HC baseline.

The gesture spotting performance of each class is also
evaluated. Table IV presents average and per class tIoU of
all variations using a tIoU threshold of 0.5. The high tIoU
score obtained by circle and denial gestures shows that our
approaches can overcome the challenging problem of dividing
a long gesture into several small parts. This issue is illustrated

Authorized licensed use limited to: UNIVERSITY OF ELECTRO COMMUNICATIONS. Downloaded on July 31,2020 at 09:17:17 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BENITEZ-GARCIA et al.: CONTINUOUS FINGER GESTURE SPOTTING AND RECOGNITION 9

TABLE IV

AVERAGE AND PER-CLASS TIOU@0.5 RESULTS OF OUR
APPROACH VARIATIONS

Fig. 9. Confusion matrices of our both proposals (hand-crafted and deep-
network).

in Figure 1, where a denial gesture could be misrecognized
as two flicking-left gesture if the fourth nucleus frame is
false-detected as a boundary frame.

From Table IV, we can also notice that the flicking-up
class obtains the lowest results. This issue occurs mainly
for two factors: 1) the appearance of each gesture frame is
more similar than other gestures, as shown in Figure 8 (d);
2) the end boundary frame of this gesture often presents
apparent differences in the finger position with respect to the
start boundary; this issue mainly occurs when the gesture
is performed continuously. On the other hand, our DN trip-
simil approach outperforms other variations in almost all
classes, except for flicking-right, which is surprisingly better
recognized by our HC simil approach. This issue might be
related to misrecognition errors of the gestures recognition
process due to the lack of motion information.

Confusion matrices of our both approaches are shown
in Figure 9. The average accuracy achieved by HC simil and
DN trip-simil is 69% and 84%, respectively. The most relevant
misrecognition errors from each approach are flicking-up →
flicking-right (28%), and flicking-right → flicking-up (27%)
from HC simil and DN trip-simil, respectively. These errors
are produced due to the appearance similarities between these
gestures, which are generated by the camera perspective bias.
As illustrated in Figure 10, flicking-right and flicking-up look
similar when the hand is at the farthest point from the camera
(location P3). Another recurrent error of both approaches is
related to the circle gesture. Since this gesture has the longest
duration, this error reflects that more temporal sections are
needed to define the circle gesture. Besides, this gesture clearly

Fig. 10. Example of a common misrecognition error from two different
gestures (FR ↔ FU), which is produced by the hand perspective (located
at P3). The red arrows indicate the motion direction of the finger.

TABLE V

GESTURE SPOTTING RESULTS USING DIFFERENT TIOU THRESHOLDS

presents intraclass appearance changes due to differences in
finger position and motion.

C. Comparison With Previous Works

We compare our proposals with three previous approaches:
C3D [32], ROAD [16], and RHGDC [22]. Real-time Hand
Gesture Detection and Classification (RHGDC) is a recent
approach which focuses on recognizing gestures in real-time.
RHGDC employs two 3D CNN models which affect the
memory storage requirements. We implemented RHGDC with
the standard parameters defined in its publicly available code
on Pytorch. Real-time Online Action Detection (ROAD) is
one of the few state-of-the-art approaches that can perform
online without comprising memory storage with huge mod-
els (such as 3DCNN-based approaches). We trained ROAD
with a reduced VGG-16 network and the conventional SSD
detector, by using their publicly available code on Pytorch.
The results of these methods are compared with our proposals
in Table V. Although QOM [40] is commonly applied in
the state-of-the-art approaches of the ChaLearn LAP ConGD
challenge [30], [39], [41], we did not include it in this
comparison because we experimentally got poor results when
using optical flow from IR images instead of depth images.

The benefit of our proposals can be easily seen when
using tIoU@0.8. The results of DN trip-simil and DN simil
outperform all previous works, showing that the similarity
check process helps to precisely determine the boundaries
of continuous gestures. HC simil achieves competitive results
compared with those of deep learning methods, and it is even
better than C3D when precise detections of boundaries are
required (tIoU@0.8).
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Fig. 11. Comparison of tIoU per class using a threshold of 0.5.

Fig. 12. Confusion matrices of previous works.

Figure 11 shows a comparison of per class gesture spotting
performance between DN trip-simil and all previous deep
learning approaches. The results of flicking-up suggest that
the motion information learned by 3D CNN models benefits
the gesture spotting, since the hand motion of this class is
distinctive even if the shape is very similar to boundary frames.
That is why DN trip-simil and ROAD have problems to spot
this class, since they only learn appearance features with 2D
CNN models. On the other hand, our proposal significantly
overcomes the results of flicking-down gestures. 3D CNN
based approaches have several problems spotting this class
because flicking-down gestures share motion and appearance
similarities with the retraction state, as shown in Figure 1.

Confusion matrices of previous works are shown in
Figure 12. Flicking-up and flicking-right results from C3D
and RHGDC indicate that the misrecognition errors presented
by DN trip-simil can be solved by including motion infor-
mation, which is the distinctive feature among these classes
(as illustrated in Figure 10). Moreover, a critical issue of
these methods is related to the fixed-length input of 3D CNN
models. Gestures shorter than the required input size are forced

TABLE VI

COMPARISON OF GESTURE RECOGNITION RESULTS

to loop frames as many times as necessary to satisfy fixed-
length. Thus, the misrecognition errors of flicking-down ↔
flicking-up might be produced due to the described problem
combined with the imprecise spotting, since they may include
frames from preparation or retraction states. ROAD does not
present these issues because it does not employ 3D CNN
models. However, denial gesture recognition is affected by the
frame-wise classification, due to the hand shape look similar
to different gestures.

ROAD presents the highest gesture recognition accu-
racy (86%). However, as shown in Table VI, DN trip-simil
presents better performance, due to the imbalance on the
amount of instances per class. Our proposal presents the best
results of recall, precision, and f1-score. Indeed, DN trip-
simil overcomes more than 20% the precision and f1-score
of ROAD. These results suggest that our gesture recognition
proposal is more effective than previous works even when
not perfect gesture spotting is achieved (as evaluated by
tIoU@0.5).

In general, the experimental results confirm that our propos-
als have certain robustness to scale and orientation changes.
In the case of our DN approach, the random crop augmentation
and the training data with different hand positions may alle-
viate these problems. However, due to the lack of explic-
itly motion information, an orientation issue is still present,
as illustrated in Figure 10. On the other hand, the different RF
models trained based on the three hand positions may alleviate
the related problems of our HC approach.

D. Testing Time Evaluation

To demonstrate the real-time capability of our both pro-
posals, we present detection speeds of each involved process
in Table VII and Table VIII, respectively. HC simil can run at
28 fps, even if all processes are sequentially run on CPU. Note
that the bottleneck of the performance relies on the optical flow
computation. Thus, we can further speed-up this approach by
choosing a more efficient optical flow process. DN trip-simil
method runs at 53 fps on a single GTX 1080 GPU. In this
case, the SSD lite process presents the bottleneck, which can
be improved by any faster object detector approach.

Finally, Table IX presents a comparison of all evaluated
works based on the inference time (speed) and the model
size in terms of storage memory consumption. We can
notice that the fastest method is HC baseline (running on
CPU), but it presents deficiencies on gesture spotting and
recognition (showing the lowest tIoU score). Conversely, HC
simil approach can perform at 28 fps, and higher accuracy
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TABLE VII

COMPUTATIONAL TIME OF EACH PROCESS INVOLVED IN HC SIMIL

TABLE VIII

COMPUTATIONAL TIME OF EACH PROCESS INVOLVED IN DN TRIP-SIMIL

TABLE IX

COMPARISON OF INFERENCE TIME AND MODEL SIZE

(more than 10% higher than the baseline). On the other
hand, our deep-network approaches present the smallest model
size, while being significantly faster than previous works. In
resume, our proposals present the most efficient performance
taking into account the tradeoffs between inference time and
accuracy.

VIII. CONCLUSION

In this paper, we have proposed a continuous finger gesture
spotting and recognition method intended to control in-car
devices. Gesture spotting was achieved by taking advantage
of the boundary similarities of target gestures. Gesture recog-
nition was based on a temporal normalization of features
extracted from the set of spotted frames. We have presented
two proposals capable of performing on real-time based on
hand-crafted and deep-learned features. In the experiments,
we assess our two approaches for recognizing driver’s finger
gestures, and demonstrate that, both methods obtain better
performance than previous works. As future work, we plan to
implement an end to end optimization, and to include specific
temporal features for our deep-network approach. We also
would like to evaluate our approach in the presence of natural

hand movements that may look like target gestures, as well as
in extreme illumination conditions, such as night driving in a
real-world environment.
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