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Sign Language Recognition Based on Spatial-Temporal Graph Convolution-Transformer

Natsuki TAKAYAMA, Gibran BENITEZ-GARCIA and Hiroki TAKAHASHI

This paper reports on sign language recognition based on human body part tracking. Tracking-based sign language
recognition has practical advantages, such as robustness against variations in clothes and scene backgrounds. However,
there is still room for improving feature extraction in tracking-based sign language recognition. In this paper, a tracking-
based continuous sign language word recognition method called Spatial-Temporal Graph Convolution-Transformer is pre-
sented. Spatial-temporal graph convolution is employed to improve framewise feature extraction using tracking points,
while Transformer enables the model to recognize word sequences of arbitrary lengths. Besides the model design, the

training strategy also has an impact on the recognition performance. Multi-task learning, which combines connectionist

temporal classification and cross-entropy losses, is employed to train the proposed method in this study. This training

strategy improved the recognition performance by a significant margin. The proposed method was evaluated statistically

using a sign language video dataset consisting of 275 types of isolated words and 120 types of sentences. The evaluation
results show that STGC-Transformer with multi-task learning achieved 12.14% and 2.07% word error rates for isolated

words and sentences, respectively.

Key words: deep neural networks, multi-task learning, sign language recognition, spatial temporal graph convolution,

transformer

1. Introduction

Sign language translation, which refers to the translation of na-
tive signers’ signs into text, contributes to improving communica-
tions between native signers and speakers. Sign language is com-
monly represented by several visual cues, such as hand motion
and shapes, and non-manual signals, including posture, facial ex-
pression, gaze, and mouth motions. Owing to this characteristic,
vision-based sign language recognition, in which signs are recog-
nized from videos, is an important technique for improving sign
language translation.

Sign language recognition has a history of about 30 years. Re-
search efforts have led to proposals for continuous sign language
word recognition V2 and translation ®* in recent years. Convolu-
tional neural networks (CNNs) are directly applied to video frames
to extract framewise features in these methods.

At the same time, tracking-based sign language recognition has
become feasible because of recent improvements in human body
part tracking. Tracking-based sign language recognition has prac-
tical advantages. For example, the tracking points are robust
against scene variation, while lightweight data reduce the learn-
ing time and storage capacity required. Moreover, the tracking
can also work on edge devices. These characteristics are essential
for large-scale sign language recognition and production systems.
Therefore, it is expected that the importance of tracking-based sign
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language recognition will increase in the future.

Owing to the above considerations, we propose a tracking-based
sign language recognition method in this paper. The tracking
points are more abstracted data than raw images. Therefore, fea-
ture extraction performance is a crucial issue in the approach.
Moreover, continuous sign language recognition must be able to
handle variable-length sequences, unlike standard action recogni-
tion.

To address these issues, we propose a tracking-based sign lan-
guage recognition referred to as Spatial-Temporal Graph Convolu-
tion (STGC)-Transformer. We employ STGC® to improve frame-
wise feature extraction from the tracking points. Furthermore,
we combine STGC with Transformer® to recognize the arbitrary
lengths of continuous sign language words.

In addition to the model design, the training strategy is also
an essential part of deep neural network (DNN) models. We ap-
ply multi-task learning, which combines the connectionist tempo-
ral classification (CTC)” and cross-entropy (CE) losses to train
the proposed model. The effectiveness of this training strategy is
demonstrated through evaluation.

In this paper, we report the recognition performance using a sign
language video dataset. The dataset contains 275 types of isolated
word videos and 120 types of sequence videos. An example of
a sign-language video is shown in Fig.1. Figure 1 (a) and (b) are
examples of the isolated word videos which perform “ A (Nyu-
useki)” and “7F¥ (Kibou).” “Nyuuseki” and “Kibou™ mean “reg-
istration of marriage” and “hope” in Japanese sign language, re-
spectively. The videos include marginal motions such as “Short
pause,” “Arm up,” and “Arm down.” These marginal motions do

1028 BT ZR:E/Journal of the Japan Society for Precision Engineering Vol.87, No.12 2021



Spatial-Temporal Graph Convolution-Transformer (CED<F5E5358

Short pause | Arm up |

[Nyuuseki]

> Time
I Arm down I Short pause

(a) Individual word video which performs “Nyuuseki”

Short pause | Arm up | [Kibou]

- .
= Time
| Arm down ] Short pause

(b) Individual word video which performs “Kibou"

Short pause | Arm up | [Nyuuseki] |

Transition

I [Kibou] |

(¢) Sentence video consisting of “Nyuuseki” and “Kibou”

Fig.1 Examples of sign language videos

not have lexical meanings. Figure 1 (c) is an example of a sen-
tence video consisting of “Nyuuseki” and “Kibou,” which means
“I"d like to register our marriage.” The sequence is represented
by expressing the words continuously. The “Transition” motion
appears between each word motion. Although the “Transition”
motion is dependent on the neighboring word motions, it does not
have lexical meaning.

99 are two well-

Garbage modeling® and attention networks
known methods for handling marginal motions. In garbage mod-
eling, marginal motions are recognized explicitly and removed in
post-processing. In contrast, the attention network learns to atten-
uate the effects of marginal motions on recognition. Garbage mod-
eling requires the marginal motions to be manually designed, for
which the selection of appropriate parameters is difficult. There-
fore, we employ Transformer, which includes an attention network
in its block.

Isolated word recognition and continuous word recognition have
different characteristics. As shown in Fig.1, the motion for a sen-
tence is more complicated than that for an isolated word. On the
other hand, additive information, such as variations in sequence
length and the label order, are present in sentences. Previous meth-
ods have targeted either isolated word recognition or continuous
word recognition and lack a unified evaluation. The evaluation of
the proposed method for both isolated and continuous word recog-
nition is reported in this paper.

The remainder of this paper is organized as follows. In Section
2, we introduce conventional sign language recognition, tracking-
based feature extraction, and multi-task learning methods. In Sec-
tion 3, we describe STGC and its implementation in this study.

In Section 4, we describe the proposed sign language recognition
method. In Section 5, we describe our sign-language video dataset
and evaluate the proposed method. Finally, we give our conclu-
sions and suggestions for future research in Section 6.

2. Related Work

2.1 Sign Language Recognition

One of the standard sign language recognition is a combina-
tion of framewise feature extraction and temporal recognition.
The early methods employ handcrafted features such as SIFT and
HOG ' '? and combine them with statistical temporal pattern
recognition methods, such as the hidden Markov model (HMM).
However, these handcrafted features do not give adequate perfor-
mance, and the HMM requires careful manual design. For these
reasons, these elements have been replaced by DNN, and many
types of architectures ?~*® 13 have been proposed in recent years.

Coster et al.'¥ proposed a Transformer-based method for
tracking-based sign language recognition. They applied Open-
Pose ' to extract tracking points and combined the tracking points
with CNN features to enrich the framewise features. Li et al.'®
proposed temporal graph convolutional networks for performance
comparison. Similar to our approach, they attempted to improve
feature extraction by using graph convolution and Transformer.
However, they focused on isolated word recognition in which the
entire sequence was utilized to recognize each word. Therefore,
their methods cannot be easily applied for continuous word recog-
nition. STGC-Transformer is designed for continuous word recog-
nition and can be applied to isolated words to recognize single
word sequences.
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2.2 Tracking-Based Feature Extraction

Feature extraction using tracking points has been studied in
the field of action recognition. Tracking-based feature extrac-
tion methods can be divided into handcrafted and DNN-based ap-
proaches. Handcrafted approaches include normalized relative po-

sitions '®, sequential position covariance '”

, geometric transfor-
mation parameters '¥, and directional vectors between neighbor-
ing points 2% As for DNN-based methods, recurrent neural net-
works (RNNs) have often been applied to capture temporal depen-
dencies 2”??, The standard CNN has also been used for tracking

B2 - Similar to

sequences encoded in two-dimensional images
image features, handcrafted features do not give sufficient perfor-
mance. RNN and CNN cannot easily capture the local relation-
ships between the tracking points correctly.

Graph convolution is a generalization of CNN to a graph struc-
ture. Yan et al.” proposed STGC, in which graph convolution is
applied to a human skeleton. STGC is a hot topic in action recog-
nition and has been extended to body parts-based subgraphs > and
multi-stream structures with attention networks 22", We note that
the original STGC and its extensions use the entire sequence to rec-

ognize a single action, similar to isolated word recognition ' ¥,

2.3 Multi-Task Learning

Multi-task learning is a training approach for generalizing mod-
els by combining multiple losses associated with each task Y.
Combinations of alignment, framewise decoding, and sequence-
to-sequence decoding losses have often been applied in sign lan-
guage recognition ¥ 2*3%_ In this study, we employ a combination
of framewise and sequence-to-sequence decoding losses because
using the alignment loss often requires complicated training pro-

cedures, such as multi-stage or iterative optimizations > %32,

3. Framewise Feature Extraction Based on STGC

3.1 Graph Construction

A brief introduction to STGC and its implementation in our
study is presented in this section. Graph convolution is a gener-
alization of CNN that performs convolution on graph-structured
data, and it calculates a weighted sum of features of one node and
its neighbors. In STGC, features are extracted by applying spa-
tial and temporal graph convolution to the spatiotemporal graph
G=(V,E).V ={v|t=1,...,T;i=1,..., N} indicates
a set of nodes where 7" and N are the numbers of video frames and
tracking points, respectively. Each node is associated with each
tracking point in a frame. E = EV |JET |J E” indicates a set
of edges where E™ = {(vt:,ve;)|i # 7} is a set of spatial edges
that connect nodes in the same frame, ET = {(vsi, v(es1)i)} is
a set of temporal edges that connect the nodes which refer same
tracking points along the time axis, and E' = {(vsi,ve:)} is a
set of self-connections. E” and E” define neighbors of nodes in
spatial and temporal graph convolution, respectively. E’ is used
in both spatial and temporal graph convolution to refer to self fea-
tures of nodes.

We used 50 tracking points on the nose, neck, shoulders, arms,
and hands as the input to STGC. We employed OpenPose ' for
human body parts tracking. The features from each tracking point

— Spatial edge
— Temporal edge

(a) Graph structure

(b) Mapping joints to weights

Fig. 2 Spatiotemporal graph for STGC

include its horizontal and vertical coordinates.

Letnode v;;¢ = 1,..., 50 be associated with the tracking points
obtained using OpenPose. In the proposed method, the spatial
edges are connected based on the human skeleton, and the nodes
which refer same tracking points in neighboring frames are con-
nected by temporal edges, as shown in Fig.2(a). The blue circles
in Fig.2(a) indicate the nodes. The blue lines are the spatial edges,
where edges belonging to the same frame are indicated with the
same saturation. The red lines are the temporal edges. The tem-
poral edges on the hand and the self-connections are omitted in
Fig.2(a) for better visibility.

3.2 Graph Convolution
The spatial graph convolution for node v; is written as

fourw)= 3 Z%fm(vj)w(h(w)), M

v; BN (v;)

where f(v) denotes the feature vector of the node, and B™ (v;) =
{v;ld(v;j,vi) < D)} is the neighborhood of node v;. d(v;,v;)
indicates the shortest distance between two nodes. D is a control
parameter that defines the neighborhood. We used D = 1 in this
study. aw is a function that returns the weight based on the index
value. /; is a mapping function that associates a node with a weight
vector as follows:

L d(v°,v;) = d(v°,vi)
L) =2 daf,v) < (v, ) @
3 d(v¢,v;) > d(vC, ).

v© is the reference point of the mapping function, and Z;; =
2 v, deg(vk); li(vk) = li(v;) is a normalization term that adjusts
the effect of the node on the output. deg(v) denotes the degree of
the node.

We employ the tracking point on the nose as the reference point
ve. Figure 2 (b) shows an example of mapping between node v;
and its neighbors.

Similar to the spatial graph convolution, the temporal graph con-
volution for node vy; is written as

Foulo)= 3

v €EBT (vy;)

Fin(vri)w(l(vei)), 3

where BT (vi;) = {vri|d(vri,ves) < | Ki/2]} is the neighbor-
hood of node v;; along temporal edges. K indicates a temporal
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Fig. 3 Process flow of STGC

range that defines the neighborhood. I;(v-:) = 7 — £ + [ K¢ /2]
is a mapping function. The mapping function /;(v;) associates
nodes with weight vectors one by one along the time axis for the
temporal graph convolution.
3.3 Implementation

The implementation of STGC is described as follows: We em-
ploy cascaded architecture, consisting of separated spatial and
temporal graph convolution layers similar to the extended meth-

ods 26) 27)

rather than a unified spatial-temporal graph convolution
layer”. Figure 3 shows the process flow of STGC. Blue and red
colors represent the spatial and temporal graph convolutions, re-
spectively. Let C' be the feature dimensions belonging to each
node. f € RE*T*N represents the feature map of the entire se-
quence. At this time, the spatial graph convolution can be con-

verted to o
Z Wi (finAk), (€3]
k

where K' = 3 indicates the kernel size determined by the map-
ping function ;, and Ay = A;'/*(Ar @ M)A is an
N x N matrix. Ay is a subset of the adjacency matrix deter-
mined by the mapping function /;. Ay is an N x N matrix with
A = Y ,(AY) + a as the matrix elements. o = 0.001 is a
constant included to avoid division by zero. M is an N x N
matrix that applies weights to the spatial edges. The elements of
M are initialized to 1 and updated through training. & denotes
the Hadamard product. Wj(+) is a pointwise convolution that has
different parameters depending on k.

The feature vectors are mapped to weight vectors one by one as
described in the mapping function I;(v-;). Moreover, the feature
vectors are well-ordered in the feature map f. Therefore, the tem-
poral graph convolution can be implemented by a standard convo-
lution layer with a K; x 1 kernel. We used K; = 9 in this work.
Batch Normalization, ReLLU, and Dropout were applied to stabilize
the training.

Encoder B Decoder

[ Qutput probabilities: P ] : [ Output probabilities: Q) ]
1

| FC & Softmax FC & Softmax |

[} )
:I Feed Forward: 256 [ ]
ni 1 ;
spaszssssssdehssszesenes * | i ]
Feed Forward: 256 H | ' Attention: 64 u:
p— e a
,l Self-Attention: 64 IJE | E[ Masked Self-Attention: 64 UE
o o o o o - - -
Positional | B &
ositiona g Positiona
Encoding e;? 1 Encoding G;?
| FC: 64 & ID-BN & ReLU | ¢
s |
| STGC: 64 x 50 |
w3 1
I 1D-BN I 1 [ Word Embedding: 64 I
t i 1
[ Input feature: X ] 1 [ Input words: ¥ ]

— Data flow

Fig.4 Overview of the recognition model

4. Sign Language Recognition Based on
STGC-Transformer

4.1 Process Overview

Continuous sign language word recognition can be mod-
eled as a sequence-to-sequence learning problem. Let
X = {x1,...,2t,-..,2r}, & € R and ¥ =
{Y1s- s Ysre - ys} ys € {<start >, <end >, <pad >, W} be
the input feature sequence and word sequence, respectively. a; in-
dicates a set of tracking coordinates extracted from the ¢th frame.
W is the set of words to be recognized. <start > and <end >
represent the start and end of the sentence, respectively. <pad >
indicates a padding keyword to ensure that the lengths of the sen-
tences are the same. We note that the marginal motions, “Short
pause,” “Arm up,” “Arm down,” and “Transition” are not included
in the vocabulary. Y is represented as a sequence of discrete in-
dices in the implementation. STGC-Transformer attempts to learn
the optimized projection X — Y through training.

The input feature sequences are required to have a fixed length
during both training and testing. Similarly, the input word se-
quences also need to have a fixed length during training. These
requirements are due to the limitations of the mini-batch training
and the Transformer layers. Let Thuq. and Si,qz be the maximum
lengths of the input feature sequences and input word sequences
in the dataset, respectively. If the length of a feature sequence is
T < Tinaz» 0 € R is inserted after az7. Similarly, if the length
of a sequence is S < Smas. < pad > is inserted after ys.

Figure 4 shows the overview of the recognition model. The pro-
posed model consists of an encoder and decoder. The encoder
transforms the input sequence into the abstracted vector sequence.
The decoder utilizes the output from the encoder and input word
sequence to predict the output word sequentially. Figure 4 illus-
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trates the encoder and decoder with blue and red colors, respec-
tively. The rectangles and rounded rectangles indicate the layers
and data, respectively. The number of rectangles drawn for each
layer indicates the dimension of the output from the layer. FC
and 1D-BN are fully connected layers and temporal batch nor-
malization layers, respectively. The gray rectangles indicate the
Transformer encoder and decoder blocks. We employ two heads
of attention networks in the Transformer blocks. Two Transformer
blocks are cascaded in the encoder and decoder.

The FC layers followed by softmax layers convert the interme-
diate features into the output probabilities of the words. The vo-
cabulary determines the units of the final FC layers in the encoder
and decoder.

4.2 Encoding Process

The encoder transforms the input sequence into the abstracted
vector sequence. First, the encoder normalizes the coordinates
using temporal batch normalization. Next, three cascaded STGC
layers apply graph convolution to the intermediate features. As de-
scribed in Section 3, the intermediate features outputted by STGC
are C'x T x N feature maps. Generally, the input to Transformer is
assumed to be a T" x C feature vector. Simply flattening the feature
map will give 64 x 50 = 3200-dimensional feature vectors, which
are expected to contain redundancy. Therefore, the fully connected
layer is applied to the intermediate features after STGC, and the in-
termediate features are converted into 64-dimensional vectors.

After the framewise feature transformation, multidimensional-
temporal signals are added to the features by positional encoding.
The multidimensional-temporal signals are defined as

PE(t, 2k) = sin
PE(t,2k+1) = cos

t
Loooozkidmodet ! (5)
100002%/ dmodel ?
where doder denotes the dimensions of the input features. We set
dmodet = 64 for the encoder and decoder in this work.

The output of the Transformer encoder has two branches. One
branch is connected to the Transformer decoder. The other branch
is directed to the FC layer. The final FC and softmax layers of the
encoder convert the intermediate features into the frame-wise word
probabilities.

The calculation of the framewise decoding loss based on CTC is
as follows: Let P = {p;};p¢ € [0.0,1.0]*!"*1 be the output
probabilities of the encoder, where |WW/| is the number of vocabu-
laries. The additional dimension of p, corresponds to the “blank™
keyword of CTC. CTC regards redundant representations, includ-
ing “blank” and repeated words, as identical sequences and seeks
the most probable sequences to the target sequence. Let 7 be a
path that matches a redundant representation of Y. The CTC loss
is then calculated as

Lere = —% log p(Y'|X), (6)
p(Y]1X) =Y Y logpi', @)
el ¢

where €2 is a set of paths that correspond to Y™ and py* is the tth
probability on the path 7v. CTC calculates Eq. (7) effectively by
using dynamic programming. We note that framewise decoding is
performed only during training.

4.3 Decoding Process

The decoder predicts words sequentially using the output from
the encoder and the input word sequence. The Word Embedding
layer converts discrete numbers corresponding to words into 64-
dimensional vectors. The subsequent processes are the same as
those in the standard Transformer .

The sequence-to-sequence decoding is performed as follows: In
the training phase, ¥ = {y1 = <start >,...,ys € W,...,ys =
<end >,ys41 = <pad >,...,¥S.. = <pad >} is inputted into
the decoder. Similar to the encoder, the final FC and softmax lay-
ers convert the output of the Transformer decoder into the word
probabilities @ = {gs}; gs € [0.0,1.0]*/WI*3 The three ad-
ditional dimensions of gs correspond to <start >, <end >, and
<pad >.

In the test phase, iy, = <(start > is input first, and then the model
predicts the next word #;. The predicted word is concatenated as
{y1 = <start >,...,ys = §s—1} and input into the next repeti-
tion. This process is repeated until s = <end > is outputted.

Let Y*;y: € {0.0,1.0}*/WI*3 4 . eT = 1.0 be a one-hot
vector representation of Y, where e = {1.0}*'"WI*3 is a unit
vector. The sequence-to-sequence decoding loss based on CE is
calculated as follows:

1 * T
Low=—¢ Z s -log(gs). ®)

Our training strategy minimizes the weighted sum of the CTC
loss Lore and CE loss Lo g. The weighted sum of the losses are
defined as

L = M.crc + Lk, &)
where A is a hyperparameter to control the relative importance of
the CTC loss and is evaluated in Section 5.

5. Evaluation

5.1 Dataset

We built a sign language video dataset to evaluate the proposed
method. The signers are 37 adults who have experience in sign
language. We assumed a conversation at the city office and col-
lected 275 types of isolated word videos and 120 types of sentence
videos. Table 1 shows examples of the sentences. We note that
the translations in Table 1 are just to explain the content, and the
sign translation task is beyond the scope of this paper. We recorded
the videos with a smartphone camera. All the video frames were
recorded at 30 frames per second and 640 x 360 pixels. The single
signer sat on a chair and performed each word and sentence five
times in front of the camera. The signers were posed in the static
posture at the beginning and end of the sign, as shown in Fig.1.
‘We defined an action instance as the frames between these static
postures. We focus on tracking-based sign language recognition in
this research. Therefore, we used the tracking points extracted by
OpenPose as the inputs and discarded the raw video frames.

Table 2 shows a summary of the dataset. The number of action
types is in parentheses. We note that horizontally flipped tracking
sequences were added to avoid the effect of the dominant hand.
The number of videos from each signer was not balanced in the
dataset. Hence, we selected the two signers with the largest num-
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Table 1 Examples of sentences

Words [ A (registration of marriage)], [ & (Hope)]

Translation I'd like to register for the marriage.

Words [ (City)], [#} (Outside)], [[3H (Parents)], [{Er (Live)]

Translation My parents live outside of the city.

Words [ ] (Next time)), [k (Couple)], [—##1Z (Together)], [5] 28k L (Move)]

Translation ~ We will move together next time.

Words [ (Child)], [T (Allowance)], IR (Deadline)], [ DA F4L 5 (Transfer)], [H 727> (You)]
Translation ~ When will my children’s allowance be transferred?

Words (%5 (D], [% (Now)], [H (Month)], [60], [5], [ (Year)], [%2 % (become)], [ D (Finish)]
Translation I became 65 years old this month.

Table 2 Summary of sign language video dataset

Subset types || Training Test

# of signers 35 2

# of isolated words || 22640 (275) 3862 (210)
# of sentences 7466  (120) 1372 (105)

Table 3 Summary of the word lengths in the sentences

# of words 2 3 4 5 6 7 819
# of sentences 2 5123 |23 |28 | 13|18 | 4
# of words 10 | 11
# of sentences 3 1

ber of videos recorded for the isolated words and sentences as the
test signers. The sentences were composed of combinations of 200
types of words. 42 types of words in the sentences were not in-
cluded in the isolated word videos. Therefore, the total vocabulary
of the dataset was 317.

Table 3 shows a summary of the word lengths in the sentences.
The most frequently occurring sentences were short sentences of
a few words, and the maximum word length of the dataset was
eleven.

5.2 Training Details

The input feature sequences and word sequences are required to
have a fixed length during training, as mentioned in Section 4.1.
The maximum number of frames and words were 578 and 11, re-
spectively. Therefore, the input feature sequences and word se-
quences were padded with Tee = 578 and Sy = 13, respec-
tively. We note that the input word sequences includes <start >
and <end >. The lengths of the input feature sequences are known
in the experiment. Sign detection techniques >* are available when
the lengths of input feature sequences are unknown.

The training settings were as follows: The batch size was 32
throughout the training. We used the adaptive moment estimation
method to update the parameters. We repeated the training loop
150 times.

5.3 Recognition Performance
‘We used the word error rate (WER) as the performance metric
in this study. The WER is defined as

diSt(Ll s Lz)

WER= ————"—"~—
max(|L1], [L2])

100, (10)

Table 4 Performance summary

Models | A Isolated [%] Sentence [%]
GRU-Attention 0.0 34.35 12.30
Transformer 0.0 28.23 8.90
0.0 21.08 5.19

1.0 36.28 16.39

STGC-Transformer 0.1 45.29 23.15
0.01 12.14 2.07

0.001 16.49 8.32

where dist(-,-) is the Levenshtein distance between two se-
quences, and |L| indicates the word length.

Table 4 summarizes the minimum average WERs during train-
ing. Table 4 includes GRU/Attention®” and naive Transformer
in which the STGC layers were absent for comparison. We ap-
plied hyperbolic tangent in the first FC layer of the encoder in
the naive Transformer because this achieved a better result in
our evaluation. A = 0.0 implies that only the CE loss was ap-
plied. As described in Table 4, STGC-Transformer with single-
task learning achieved better performance than GRU/attention and
the naive Transformer for both isolated words and sentences.
STGC-Transformer improved the WERs by 13.27% and 7.15%
compared to GRU/attention and naive Transformer for isolated
words, respectively. Similarly, the proposed method improved the
WERs by 7.11% and 3.71% for sentences, respectively. A remark-
able improvement was achieved in isolated words, which indicates
the effectiveness of feature extraction by STGC. Moreover, the
multi-task learning improved the WERs of the proposed method
by 8.94% and 3.12% for the isolated words and sentences, respec-
tively, when A = 0.01 was applied. These improvements show
the effectiveness of the proposed training strategy. All models
achieved good WERSs in sentences. It could be inferred that addi-
tive information, such as the length of the input sequence and the
decoder’s language model, contributed to improving the results.

Figure 5 shows the behaviors of the attention weights of the sec-
ond attention block in the decoder. The video shown in Fig. 1(c)
was used to generate Fig. 5. The horizontal and vertical axes indi-
cate the frame indices and attention weights, respectively. The blue
and orange lines represent the attention weights for the prediction
of the first and second words, respectively. The images in Fig.5
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Fig. 5 Behaviors of the attention weights

(b) Isolated word “Mono™

Fig. 6 Example of similar sign motions

show the motions corresponding to the frame indices. The arrows
indicate the correspondences. The attention layer gave higher and
lower weights to the word motions and marginal motions, respec-
tively.

Finally, we show an example of a failed case in isolated word
recognition. Figure 6 (a) and (b) are examples of the words “Fi
(Zei)” and “$% (Mono),” which mean “tax” and “object” respec-
tively. For the word “Zei,” a ring is first created with the thumb
and index finger, and then the hand is rotated while opening the
ring. For the word “Mono,” a ring is first created with the thumb
and index finger, and then the hand is rotated while maintaining
the shape of the ring. The motions of the two words are very sim-
ilar, except for the final hand shape. The tracking accuracy of the
current OpenPose system may not be sufficient to capture this fine
difference.

6. Conclusions and Future Work

We proposed STGC-Transformer for tracking-based sign lan-
guage recognition. We evaluated the proposed method using
a dataset that included 275 types of isolated word videos and
120 types of sequence videos by 37 signers. In the evaluation,
STGC-Transformer with single-task learning achieved 21.08%
and 5.19% WERs for isolated words and sentences, respectively.
Similarly, STGC-Transformer with multi-task learning achieved
12.14% and 2.07% WERs for isolated words and sentences, re-
spectively.

Interestingly, the accuracy of continuous word recognition was
superior to that of isolated word recognition. The variation of the
input sequence lengths and language model of the decoder con-
tributed to the recognition. However, these contributions were
small in isolated word recognition. We assume that the tracking
and feature extraction performance has more significant effects on
isolated word recognition.

Spatial-temporal graph convolution® is a hot topic in ac-

25)-

tion recognition, and its extensions >~ 2” have been actively re-

searched. These methods can be expected to improve the proposed
method.

Although the dataset used in this work includes both isolated
words and sentences, it does not have enough vocabulary and sen-
tence patterns. The extension of the dataset must be addressed in
future research.
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