
sensors

Article

Improving Real-Time Hand Gesture Recognition with
Semantic Segmentation

Gibran Benitez-Garcia 1,† , Lidia Prudente-Tixteco 2,†, Luis Carlos Castro-Madrid 2, Rocio Toscano-Medina 2,
Jesus Olivares-Mercado 2, Gabriel Sanchez-Perez 2 and Luis Javier Garcia Villalba 3,*

����������
�������

Citation: Benitez-Garcia, G.;

Prudente-Tixteco, L.; Castro-Madrid,

L.C.; Toscano-Medina, R.;

Olivares-Mercado, J.; Sanchez-Perez,

G.; Villalba, L.J.G. Improving

Real-Time Hand Gesture Recognition

with Semantic Segmentation. Sensors

2021, 21, 356.

https://doi.org/10.3390/s21020356

Received: 2 December 2020

Accepted: 3 January 2021

Published: 7 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Informatics, The University of Electro-Communications, Chofu-shi 182-8585, Japan;
gibranbg@uec.ac.jp

2 Instituto Politecnico Nacional, ESIME Culhuacan, Mexico City 04440, Mexico; lprudente@ipn.mx (L.P.-T.);
lcastro@ipn.mx (L.C.C.-M.); rtoscanom@ipn.mx (R.T.-M.); jolivares@ipn.mx (J.O.-M.);
gsanchez@ipn.mx (G.S.-P.)

3 Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial
Intelligence (DISIA), Faculty of Computer Science and Engineering, Universidad Complutense de Madrid
(UCM), Calle Profesor José Garcia Santesmases, 28040 Madrid, Spain

* Correspondence: javiergv@fdi.ucm.es
† These authors contributed equally to this work.

Abstract: Hand gesture recognition (HGR) takes a central role in human–computer interaction, cov-
ering a wide range of applications in the automotive sector, consumer electronics, home automation,
and others. In recent years, accurate and efficient deep learning models have been proposed for
real-time applications. However, the most accurate approaches tend to employ multiple modalities
derived from RGB input frames, such as optical flow. This practice limits real-time performance
due to intense extra computational cost. In this paper, we avoid the optical flow computation by
proposing a real-time hand gesture recognition method based on RGB frames combined with hand
segmentation masks. We employ a light-weight semantic segmentation method (FASSD-Net) to
boost the accuracy of two efficient HGR methods: Temporal Segment Networks (TSN) and Temporal
Shift Modules (TSM). We demonstrate the efficiency of the proposal on our IPN Hand dataset, which
includes thirteen different gestures focused on interaction with touchless screens. The experimental
results show that our approach significantly overcomes the accuracy of the original TSN and TSM
algorithms by keeping real-time performance.

Keywords: hand gesture recognition; hand segmentation; FASSD-Net; TSN; TSM

1. Introduction

Hand gesture recognition (HGR) plays a central role in Human–Computer Interaction
(HCI). Recently, HGR systems using vision-based interaction and control have become
more common [1–3], and they are, compared to the conventional inputs of mouse and
keyboard, more natural because of the intuitiveness of hand gestures. Therefore, HGR
dominates a wide range of applications in the automotive sector, consumer electronics,
home automation, and others [3–6]. An essential feature for these applications is real-time
performance, so that HGR systems must be designed to give feedback with no lag to the
gestures that users may input. In particular, touchless screen manipulation is an application
that requires no lag in the HGR, so that users can be able to manipulate interfaces and
control the location of the cursor in real-time [7–9]. Therefore, a compact and efficient HGR
system is necessary to fulfill the requirements of real-time applications.

In recent years, accurate and efficient deep learning models have been proposed for
HGR [9–13]. Multiple modality inputs are used to further improve the performance of
these CNN-based models. Depth [10,14] and optical flow [11,15] are the most common
complements to the RGB images. However, the depth modality needs an extra sensor to
capture accurate information from the user’s hands. On the other hand, dense optical flow

Sensors 2021, 21, 356. https://doi.org/10.3390/s21020356 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4945-8314
https://orcid.org/0000-0001-7573-6272
https://doi.org/10.3390/s21020356
https://doi.org/10.3390/s21020356
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020356
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/356?type=check_update&version=1

Sensors 2021, 21, 356 2 of 16

is an expensive computational process that limits real-time performance. Nonetheless,
there are recent approaches that achieve fast inference speed.

In this paper, we propose to use hand segmentation masks as an alternative to depth
and optical flow modalities. Specifically, we extend our FASSD-Net [16] algorithm of real-
time semantic segmentation to classify hands pixel-wise accurately. Besides, we compare
the contribution of semantic segmentation and optical flow on two efficient state-of-the-art
(SOTA) approaches: Temporal Segment Networks (TSN) [17] and Temporal Shift Modules
(TSM) [18]. Figure 1 shows an example of the three input modalities analyzed in this work.
Note that dense optical flow is computed in real-time with 320× 240 size images using the
efficient Spatial Pyramid Network (SpyNet) [19].

Figure 1. Example of the three different modalities analyzed in this paper. Note that segmen-
tation masks and optical flow images can be performed in real-time using FASSD-Net [16] and
SpyNet [19], respectively.

To validate our proposal, we composed the IPN Hand dataset [20] for hand gesture
recognition. The dataset contains about 800 thousand frames from more than four thousand
RGB gesture videos performed by 50 distinct subjects. Our dataset includes thirteen classes
of two gesture types (static and dynamic) designed for interaction with touchless screens.
Some of the challenges that this dataset introduces are different scenes, including clutter
backgrounds, strong and weak illumination conditions, as well as static and dynamic
background environments. Besides, to accurately train semantic segmentation models, we
manually annotate (pixel-level) the hands’ location and the user shape of 500 frames of the
dataset. With the IPN Hand dataset, we experimentally prove that the combined modality
of RGB-S (segmentation) is comparable and even better than that of RGB-OF (optical flow)
for HGR based on both TSN and TSM approaches. Furthermore, the RGB-S approach is
significantly faster than its OF pair, keeping the real-time requirement of HGR applications.

In summary, the main contributions of this paper are:

• We propose an alternative to the expensive dense optical flow estimation, and the
extra sensor requirement of depth images, by using semantic segmentation images of
the hand for real-time hand gesture recognition.

• By using a simple input modality combination, we demonstrate that our RGB-S
proposal outperforms state-of-the-art methods of TSN and TSM. We also present a
statistical analysis of both approaches’ results, which shows the type of gestures that
gets more benefit from different input modalities.

Sensors 2021, 21, 356 3 of 16

• We extend our new IPN Hand dataset [20], including pixel-level annotations useful
for training semantic segmentation models. Currently available at github.com/Gibran
Benitez/IPN-hand.

2. Related Work

HGR methods can be divided into two groups based on the way for obtaining the
gesture features, i.e., e hand-crafted and deep-network based approaches [7,8,21]. Hand-
crafted features are usually extracted using descriptors such as histogram of oriented gradi-
ents (HOG) and histogram of optical flow (HoOF) [21–24]. For instance, Ohn-Bar et al. [22]
evaluated different variations of HOG and linear classifiers for HGR applied to automotive
interfaces. Joshi et al. [23] used HOG and Random Forest (RF) for classifying upper body
gestures. Borghi et al. [24] employed HoOF and support vector machines (SVM) for model-
ing the gestures in a spatio-temporal feature space. Note that HoOF features are based on
the computational expensive dense optical flow (OF) estimation, which extracts temporal
information from adjacent frames. On the other hand, Contreras and Gallegos [25] avoid
HoOF estimation and propose a hand segmentation technique based on HSV and CIELab
color space for single dynamic gesture recognition. This approach can run in real-time
using PCA and KNN for feature extraction and classification, respectively. However, it is
limited to dynamic gestures with low temporal information.

On the other hand, previous works focused on learned feature extraction methods tend
to use deep convolutional neural networks (CNNs) [6,12,26] and 3D-CNNs [10,11,13,27]
with a variety of different input modalities, such as RGB, depth [6], OF [15], infrared [26],
and even surface electromyography signals [28,29] (using armbands to sense electrical
activity of skeletal muscles). Specifically, multi-stream architectures based on different
versions of the same video with two or more CNNs in parallel, have been widely em-
ployed [9–13,26,27]. The seminal work of Karpathy et al. [30] establishes the trend of using
two-stream architectures for action recognition, which originally combines features from
low-resolution frames and high-resolution cues from the center of the frame. Concurrently,
the pioneering work of Simonyan et al. [31] first introduces the multimodal fusion of two
different features, with one stream dedicated to RGB images and the other with OF fields.

The multi-stream technique has been prevalent in recent years as shown in the
ChaLearn Look At People (LAP) gesture recognition challenge [32], where all the en-
tries used multi-stream architectures of at least RGB and depth streams. The winners of
the last IsoGD challenge, Miao et al. [10], employ a well-known 3D-CNN model called
C3D [33] to extract features from RGB, depth, and OF fields. They propose a feature level
fusion within each modality, and use SVM for classifying the fused features. One year
after that challenge, Narayana et al. [12] overcome the results by proposing a late-fusion
approach from 12 different channels, comprising focus regions of global, left and right
hand, including modalities of RGB, depth, and OF. Recently, Hakim et al. [27] proposed
to fuse RGB and depth spatio-temporal features (extracted with 3D-CNNs and LSTM
recurrent neural networks) with a Finite State Machine that restricts some gesture flows
and limits the recognition classes. D’Eusanio et al. [26], on the other hand, proposed an
early-fusion approach of RGB, depth, and infrared modalities based on a modification
of the very deep DenseNet-161 architecture. Concurrently, Kopuklu et al. [13] proposed
a hierarchical structure of 3D-CNN architectures to detect and classify continuous hand
gestures. A shallow 3D-CNN model discriminates between gestures and non-gestures in
the detection stage, while the recognition is carried out by a deep 3D-CNN using weighted
average filtering to take a single-time activation per gesture. In contrast to those methods,
we focus on real-time performance. Therefore, we used a 2D-CNN as compact as possible.
Besides, based on an efficient semantic segmentation process, we present an alternative
to the computational expensive OF estimation, as well as the use of extra sensors for
depth maps.

https://gibranbenitez.github.io/IPN_Hand/
https://gibranbenitez.github.io/IPN_Hand/

Sensors 2021, 21, 356 4 of 16

3. Proposed Method

In this section, we introduce the FASSD-Net [16] algorithm for real-time semantic seg-
mentation used to classify hands pixel-wise, as well as, the two efficient HGR approaches
which are based on our proposed multimodal RGB-S input, Temporal Segment Networks
(TSN) [17], and Temporal Shift Modules (TSM) [18].

3.1. FASSD-Net for Real-Time Semantic Segmentation

FASSD-Net [16] is based on the Harmonic Dense-Net architecture (HarDNet) [34],
a recent SOTA network inspired by Densely Connected Network (DenseNet) [35]. Its core
component, the HarDBlock (Harmonic Dense Block), is specifically designed to address
the memory traffic problems of the DenseBlock, and it is optimized to increase the den-
sity of computations of the layers, as shown in Figure 2. We increase the segmentation
performance by introducing two key modules to the U-shape encoder-decoder version of
HarDNet. The first module, Dilated Asymmetric Pyramidal Fusion (DAPF), is designed to
increase the receptive field on the top of the last stage of the encoder. The second module,
Multi-resolution Dilated Asymmetric (MDA) module, fuses and refines detail and contex-
tual information from multi-scale feature maps coming from early and deeper stages of the
network. Both modules are designed to keep a low computational complexity by using
asymmetric convolutions. The FASSD-Net is capable of running at 38 fps with an input
size of 512 × 1024 pixels on the low-power consumption Jetson Xavier NX SBC. Table 1
shows the FASSD-Net architecture used to segment pixels into four classes: background,
human shape, left and right hands. The DAPF module is located right after the last encoder
block (B4), while MDA modules are used to fuse feature maps from different scales before
each decoder block.

Table 1. Example of the FASSD-Net architecture with a 512 × 1024 input.

Stage Name Type Output Size

Input - - 512 × 1024 × 3

Encoder

Stem Conv

Conv 3 × 3 (s = 2) 256 × 512 × 16
Conv 3 × 3 256 × 512 × 24

Conv 3 × 3 (s = 2) 128 × 256 × 32
Conv 3 × 3 128 × 256 × 48

Encoder B1 HarDBlock (L = 4) 128 × 256 × 64

Encoder B2 2D Average Pooling 64 × 128 × 96HarDBlock (L = 4)

Encoder B3 2D Average Pooling 32 × 64 × 160HarDBlock (L = 8)

Encoder B4 2D Average Pooling 16 × 32 × 224HarDBlock (L = 8)

DAPF - 16 × 32 × 224

Decoder

MDA - 32 × 64 × 192

Decoder B1 HarDBlock (L = 8) 32 × 64 × 160

MDA - 64 × 128 × 119

Decoder B2 HarDBlock (L = 4) 64 × 128 × 78

MDA - 128 × 256 × 63

Decoder B3 HarDBlock (L = 4) 128 × 256 × 48

Output Conv Conv 1 × 1 128 × 256 × 4
Upsampling × 4 512 × 1024 × 4

L denotes the number of convolution layers in the HarDBlock, and s represents the stride of the convolution.

Sensors 2021, 21, 356 5 of 16

Figure 2. Concatenation scheme comparison between the DenseBlock and the HarDBlock. The HarD-
Block is named after the harmonic wave patterns that describe its concatenation scheme. “||” denotes
concatenation process.

3.2. Temporal Segment Networks (TSN)

The pioneering work of Wang et al. [17] proposes to perform video-level predictions
from entire videos using the visual information extracted from 2D-CNNs only. Instead of
applying the 2D-CNN model on single frames, the proposed Temporal Segment Networks
(TSN) operate on a sequence of short clips sparsely sampled from the entire video. Indi-
vidual preliminary predictions are produced by each short clip in the sequence based on
the defined gesture classes. Then the final video-level prediction is defined as a consensus
among all short clips. One of TSN’s key contributions resides in the learning process,
which is based on the loss values of video-level predictions instead of those from the short
clips. Thus, the model parameters are iteratively updated based on the error produced at
the video-level.

The original proposal of TSN presents a two-stream CNN combining the consensus
of RGB-based and OF-based networks. In our proposal, instead, we propose to exclude
the two-stream approach by using a single CNN based on an RGB-S input, as shown in
Figure 3. In this paper, we used ResNet-50 [36] as the main 2D-CNN architecture of TSN.
Formally, given a video V, we divide it into K segments (Sk) of an equal number of frames.
Then, the FASSD-Net is used to obtain segmentation masks of each frame to define the
multimodal RGB-S input. Finally, the TSN applied to a sequence of short clips is defined
as follows:

TSN(T1, T2, ..., TK) = H(G(F(T1; W), F(T2; W), ..., F(TK; W))), (1)

where (T1, T2, ..., TK) is a sequence of short clips. Each Tk is randomly sampled from its
corresponding segment Sk. F represents the CNN with parameters W and produces class
scores for all the classes. The consensus function G averages the class scores from multiple
short clips. Based on this consensus, the Softmax function H predicts the probability
of each action class for the whole video. Note that there is a single CNN model with
shared parameters W among multiple short clips, which are jointly optimized based on the
video-level predictions with standard back-propagation algorithms.

Sensors 2021, 21, 356 6 of 16

Figure 3. Temporal Segment Networks (TSN) process.

3.3. Temporal Shift Module (TSM)

The main drawback of the 2D-CNN-based networks is that extracted low-level features
cannot capture the temporal information needed for HGR. Since the model is learned frame-
wise in each short clip, it cannot infer the temporal order or more complicated temporal
relationships. Recently, Lin et al. [18] introduced the temporal shift module (TSM) as a
simple yet effective solution to this problem. In particular, it shifts part of the channels along
the temporal dimension, facilitating information exchanged among neighboring frames.
As shown in Figure 4, TSM can be inserted into 2D-CNNs to achieve temporal modeling
similar to 3D-CNNs, at negligible computational cost without learning extra parameters.

Figure 4. TSM process.

Following its original implementation [18], we insert TSM on the TSN framework,
enabling temporal information fusion at no computation. So that, a 3D-CNN process is
emulated by inserting a temporal shift module on each convolution block, enlarging the

Sensors 2021, 21, 356 7 of 16

temporal receptive field as if running a convolution along the temporal dimension. The
TSM-based network learns the parameters using a sequence of short clips as described
in Equation (1). Furthermore, to fulfill the online requirements, for each frame, the first
1/8 feature maps of each residual block of ResNet-50 [36], are stored in the memory
cache. Subsequently, the first 1/8 feature maps of the next frame are replaced with those
previously stored. In resume, the combination of 7/8 current, and 1/8 old feature maps are
used to generate each convolutional layer. Figure 4 shows the diagram of our TSM-based
network, where we further increase the feature extraction capability by providing the hand
segmentation masks at the data-level.

4. Experimental Results

In this section, we present the dataset we used for evaluating our proposal, as well as
the implementation details, and the experimental results.

4.1. Dataset

In this paper, we used the new IPN Hand dataset [20], which includes more than
5000 instances of static and dynamic gestures designed for the interaction with touchless
screens. In particular, it includes gestures to control the pointer’s location on the screen
(pointing), and to manipulate interfaces (actions): for the former, two static gestures
of pointing with one and two fingers are included (Point-1f & Point-2f); for the latter,
11 gestures are defined, including click with one and two fingers (Click-1f & Click-2f),
throw to four positions (Th-up, Th-down, Th-left & Th-right), open the hand twice (Open-
2), double click with one and two fingers (2click-1f & 2click-2f), zoom-in, and zoom-out
(Zoom-in & Zoom-o), as shown in Figure 5. Segments where natural hand movements are
performed between target classes, are defined as non-gestures states (No-gest). Non-gesture
segments represent the largest number of instances in the dataset (1431). On the other hand,
pointing classes include around 1000 instances each, while action classes 200 per gesture.
It is worth noting that, the IPN Hand dataset presents a more realistic and challenging
situation compared to common datasets due to the nature of non-gesture states, which
show natural hand movements similar to some of the target gestures. Figure 6 compares
gesture vs. non-gesture states between the IPN Hand and commonly used hand gesture
datasets, such as ConGD [37], nvGesture [9], and EgoGesture [38]. As we can see, the
non-gesture states of the IPN Hand dataset are significantly more challenging to exclude
compared to other datasets, which makes an excellent evaluation point for HGR models.

Figure 5. Examples of the 11 action gestures included in the IPN Hand dataset. The temporal order is shown from top to
down rows. For visualization purposes, segmented hand masks were blended to the RGB images. Note that not shown here
are the pointing and the non-gesture samples.

Sensors 2021, 21, 356 8 of 16

ConGD [37] nvGesture [9] EgoGesture [38] IPN Hand [20]

Figure 6. Comparison of gesture vs. non-gesture frames between commonly used hand gesture
datasets and the IPN Hand. The first row (blue) shows gesture frames, while the second to fourth
rows show non-gesture frames.

The dataset comprises 200 long videos performed by 50 different subjects. The start
and end frame index of each gesture instance in these videos were manually labeled. All
instances were recorded with an RGB camera at a resolution of 640× 480 with a frame
rate of 30 fps. The average duration of action gestures is 65 frames, with a minimum of 9,
and a maximum of 112 frames. On the other hand, the average duration of pointer classes
and non-gesture clips is 220 and 150 frames, respectively. In addition to the class-label
annotations, for this paper, we manually annotate 500 frames at pixel-level. In this way,
semantic segmentation algorithms can be trained to detect hands and humans, in realistic
scenarios. Specifically, we define the segmentation labels of person, left, and right hands,
as shown in Figure 7. The complete dataset with our annotations is now available at
github.com/GibranBenitez/IPN-hand.

We use the originally proposed data split [20], which is divided by subject into
training (74%), and testing (26%) sets, resulting in 148 and 52 videos, respectively. The
amount of pointer/action gesture instances in training, and testing splits are 3117, and
1101, respectively. In this way, we ensure a strict evaluation since none of the subjects
included in the testing sets are shown in training.

Figure 7. Example of the pixel-level annotations on non-gesture frames. Top row: original RGB
frames. Bottom row: pixel-level annotations, gray=person, cyan=right, magenta=left hand.

https://gibranbenitez.github.io/IPN_Hand/
https://gibranbenitez.github.io/IPN_Hand/

Sensors 2021, 21, 356 9 of 16

4.2. Implementation Details

We use Python 3.6 and PyTorch 1.2 with CUDA 10.2 for all experiments, and the
inference time of OF and segment calculation is measured on an Intel Core i7-9700K
desktop with a single Nvidia GTX 1080Ti GPU, if not specified otherwise.

We train the FASSD-Net [16] model with a synthetic hand pose estimation dataset [39],
which contains more than 40 thousand images with hands fully annotated at pixel-level
(https://lmb.informatik.uni-freiburg.de/projects/hand3d/). Following the original open-
source implementation of FASSD-Net [16], we use cross-entropy loss, as well as Stochastic
Gradient Descent (SGD) with weight-decay 5e-4 and momentum 0.9. The “poly” learning
rate strategy is used with an initial learning rate of 0.02. We train the model on a multi-GPU
setup with two Nvidia GTX 1080Ti. Thus, based on the GPU memory limitations, the
training was set for 90k iterations with batch size 32 and a crop size of 480× 360. With
this model, we fine-tune the part of the IPN Hand dataset that we annotated pixel-wise,
where 400 and 100 frames were randomly selected for training and validation, respectively.
We extend the same training protocol for 45000 iterations for the final model, setting the
batch size to 64 and the learning rate to 0.001. Finally, we obtain the complete dataset’s
segmentation masks at the original input size of 640× 480, where hand masks are binarized,
as shown in Figure 1. On the other hand, the dense optical flow estimation is obtained with
the SPyNet. We used the open-source implementation and pre-trained model of [40] to
calculate real-time OF maps for the complete dataset. Following common standards, we
employ the color wheel described in [41] for color-coding the optical flow values, as shown
in Figure 1. To keep the RGB-OF input size consistent, we convert the color-coded OF to
grayscale images. Note that, for reaching real-time performance, we resized to 320× 240
the input for SPyNet, while we use the original input size of 640× 480 for the FASSD-Net.

We used the same ResNet-50 [36] backbone on both TSN, and TSM, which is pre-
trained on the ImageNet dataset [42]. The input size of the IPN Hand video frames is
resized to 320× 240 to achieve faster computation. Concerning data augmentation, we use
random scaling of (1×, 0.875×, 0.75×, 0.66×) and random cropping. Following the original
open-source implementation of TSM [18], the training parameters are based on the number
of segments (K). Specifically, for K = 32 are: 60 training epochs, initial learning rate of 1e-4
(decays by 0.1 at epochs 20 & 40), weight decay 5e-4, batch size 24, and dropout 0.5. We
defined the batch size based on the memory restrictions of the same setup of the semantic
segmentation model. Furthermore, for the lower number of segments, we modify the batch
size and the learning rate accordingly.

4.3. Evaluation Metrics

All the dataset videos are segmented into isolated gesture samples based on the
beginning and ending frames manually annotated. So that, the classification problem
resided on predicting the class label for each gesture sample. In this paper, the percent
of correctly labeled samples (Accuracy), and the confusion matrix of all isolated gesture
predictions are used as evaluation metrics. Nonetheless, the number of segments and the
number of frames of each gesture sample restricts the one-to-one evaluation. Therefore, a
common practice is to sample 10 random multiple clips per video [18,43]. However, this
protocol cannot fairly evaluate a big difference in the length of different clips nor gestures
that are repetitive, such as double clicks or open twice classes. Therefore, we propose to
use a controlled sliding window instead of random multiple clips evaluation. So that, the
predicted label of a video V with duration N is based on the average prediction scores of
10 clips of K frames, sparsed by a stride of size S, where S = max(1, (N/K)/K). We use
this protocol to calculate classification accuracy and confusion matrices.

4.4. Results with Different Number of Segments

Table 2 shows the comparison of the results of TSM using a different number of
segments (K) with RGB and RGB-S modalities. From this table, we can see that the proposed
RGB-S outperforms RGB’s accuracy for all the choosing segments. The improvement is

https://lmb.informatik.uni-freiburg.de/projects/hand3d/

Sensors 2021, 21, 356 10 of 16

more significant when choosing 32 segments for the process. In this way, RGB-S with
32 frames achieves the best accuracy when using TSM.

Table 2. Temporal Shift Module (TSM) results with different number of segments using RGB and
RGB-S modalities.

Modality Segments Accuracy

RGB 8 54.0373
RGB 16 50.4969
RGB 24 55.0932
RGB 32 55.9627

RGB-S 8 55.5901
RGB-S 16 50.559
RGB-S 24 55.3478
RGB-S 32 65.2795

Bold and underline denotes the best result, while bold denotes the runner-up.

To clearly show the improvement achieved of RGB-S, Figure 8 presents per-class
accuracy with both input modalities. Not all the classes are improved at the same rate, and
some are even better when using only RGB. The most significant improvement is achieved
for the pointing classes and the non-gesture, while classes of throw right and zoom-in are
clearly better when using the RGB modality. Interestingly, the results of clicking gestures
present contrasting results for the two modalities. Click with one finger, and double click
with two fingers are easily classified when using RGB-S, while RGB achieves the opposite
situation. Nonetheless, the results of RGB are more stable in these classes. In general,
the average accuracy per class for each modality is 62.8%, 63.6% for RGB and RGB-S,
respectively. Note that these results are different from the accuracy performance shown in
Table 2 due to the samples’ imbalance for each class. As mentioned before, non-gesture and
pointing classes have considerably more samples than the action classes. Therefore, we
separate the evaluation results of the IPN Hand dataset into two setups: when classifying
the complete dataset (13 classes plus non-gesture clips); and when using the 11 action
classes only.

Figure 8. Per-class accuracy performance of TSM with 32 segments using RGB and RGB-S modalities.

4.5. Results Using the Complete Dataset

In this sub-section, we compare the results of TSM and TSN when using different
input modalities with 32 segments. Table 3 shows the performance of both methods using
32 segments. RGB-OF is also compared in this table. To show the general class performance,
the average accuracy per class is also included. This table shows that the RGB-S modality
outperforms RGB and is comparable to RGB-OF specifically for the average class accuracy.
In this way, we prove that RGB-S is a suitable alternative to improve RGB modality.
Furthermore, the inference time of the frame-wise calculation for semantic segmentation is

Sensors 2021, 21, 356 11 of 16

considerable faster than that for OF. Particularly, semantic segmentation with FASSD-Net
takes 8 ms, while SpyNet needs 29 ms to calculate dense optical flow. Rather than the
model (TSM vs. TSN), the extra modality latency directly impacts the total inference time
for multi-modal models, being RGB-seg significantly faster (approx. 66 fps) than RGB-flo
(approx. 28 fps). Note that, as discussed in the implementation details, FASSD-Net uses
the original input size of 640× 480 pixels, while for SpyNet, the input must be resized to
320× 240 for reaching real-time performance.

Table 3. Results of TSM and TSN with different modalities using the complete IPN Hand dataset.

Model Segments Modality Extra Modality Time Total Inference Time Accuracy Avg. Class Accuracy

TSM 32 RGB - 6.8 ms (147 fps) 55.9627 62.7856
TSM 32 RGB-seg 8 ms 15.2 ms (66 fps) 65.2795 63.6383
TSM 32 RGB-flo 29 ms 36.2 ms (27 fps) 53.6646 59.5857

TSN 32 RGB - 6.6 ms (152 fps) 76.2733 67.7925
TSN 32 RGB-seg 8 ms 15.1 ms (66 fps) 74.8447 70.0014
TSN 32 RGB-flo 29 ms 36.1 ms (28 fps) 77.2671 69.1529

Bold and underline denotes the best result, while bold denotes the runner-up.

Interestingly, the accuracy of TSN is significantly better than that of TSM. To clearly
analyze each method’s performance, we present its confusion matrices with the different
modalities. Figure 9 shows the results of TSM, where we can see that RGB’s major problems
are related to the misclassification of non-gestures and pointing with several classes. RGB-
OF partially solves these, while RGB-S clearly improves the accuracy. However, the
misclassification problems between zoom-in and zoom-out classes are less severe on the
RGB modality. On the other hand, Figure 10 illustrates the confusion matrices of different
modalities for TSN. Contrary to TSM, this model does not present a problem to recognize
the pointing classes, solution attributed to the method itself since all modalities show
similar results. Besides, RGB-S achieves the best results for throwing classes. Resulting in
higher average performance than other modalities.

Figure 9. Confusion matrices of TSM with different input modalities.

Sensors 2021, 21, 356 12 of 16

Figure 10. Confusion matrices of TSN with different input modalities.

Comparing Figures 9 and 10, we can see a clear difference in the accuracy of pointing
classes. However, there is no clear evidence of superiority in the action classes. This
situation is further analyzed in the next sub-section.

4.6. Results Using Action Classes of the Dataset

In this experiment, we train the models analyzed in the previous sub-section with
only the 11 action classes of the dataset. In this way, we can evaluate the performance of
both HGR methods, as well as the improvement gained by different multimodality. Table 4
shows the performance of both methods with the three modalities. Note that the average
accuracy per class is the same as the general accuracy performance due to the 11 action
classes have the same number of samples. Contrary to the previous test, no imbalance
is presented. From this table, we can see that TSN still achieves the best performance.
However, opposite to TSN, it is evident that TSM achieves considerably better accuracy
than the test shown in Table 3. These results indicate that TSN is better to classify static
gestures than TSM. Furthermore, the improvement of our RGB-S proposal is more evident
in this test, where TSN with RGB-S achieves 68%, the best accuracy.

Table 4. Results of TSM and TSN with different modalities using the 11 action classes of the IPN
Hand dataset.

Model Segments Modality Accuracy Avg. Class Accuracy

TSM 32 RGB 63.6364 63.6364
TSM 32 RGB-seg 66.958 66.958
TSM 32 RGB-flo 65.035 65.035

TSN 32 RGB 66.7832 66.7832
TSN 32 RGB-seg 68.007 68.007
TSN 32 RGB-flo 65.9091 65.9091

Bold and underline denotes the best result, while bold denotes the runner-up.

Sensors 2021, 21, 356 13 of 16

Figure 11 shows the confusion matrices of TSM and TSN methods with RGB and
RGB-S modalities. We can see that our proposed RGB-S helps to solve problems related
to a similar appearance in hand shapes such as Open-2→Zoom-in for TSM, and Zoom-
o→Zoom-in for TSN. However, both methods present evident problems to distinguish
between clicking and double-clicking classes, a problem not solved even with multimodal
inputs. We speculate the reason is that repetitive gestures such as open twice and double-
clicking, may need a longer time span to be evaluated correctly. In order words, 32 frames
may not be enough to cover the main activity of these classes.

Figure 11. Confusion matrices of TSM and TSN with different input modalities, using action classes only.

5. Discussion

In the previous section, we have shown that our proposed RGB-S modality helps to
improve the accuracy performance of both TSM and TSN methods. However, we obtain
interesting results when comparing both methods using the same modality. TSM [18] was
proposed as a direct improvement to the well-known TSN [17] method. Nonetheless, our
experimental results show that TSM performs worse than TSN for hand gesture recognition
using our IPN Hand dataset. Thus, in this section, we discuss the possible reasons for
this situation.

First of all, as mentioned in Section 4.5, the number of samples per class is imbalanced.
The test set comprises 1610 segmented videos that include one gesture each. Specifically,
in the test set, we have 508 clips for the non-gesture class and 265 clips for each pointing
class (Point-1f & Point-2f), while there are only 52 clips per action class. Therefore, the
test set average accuracy will be higher for the method that recognizes better the pointing
classes and non-gestures. That is exactly the case of TSN. In this way, we speculate that
TSN results are high for these classes because the model relies more on appearance than
on temporal information. In other words, if a person is moving his hand while pointing
with one finger, that motion (temporal information) might be misclassified with the action
of clicking with one finger. Since TSM includes temporal information of all convolutional
blocks, it has more chance to fail on recognizing those classes.

On the other hand, the problem of repetitive gestures mentioned in Section 4.6 may
worsen the performance of TSM. To prove that, we estimate the results of a short action
class set by excluding the repetitive gestures (Open-2, 2click-1f & 2click-2f). Figure 12
shows the confusion matrices of both methods using our RGB-S proposal. As expected, the
results of TSM are higher than those of TSN, with an average accuracy of 85.1% and 82.9%

Sensors 2021, 21, 356 14 of 16

for TSM and TSN, respectively. In this figure, we can see that the problems of TSM for
recognizing clicking gestures are solved. Besides, the TSM can handle better than TSN the
similar appearance problems related to zoom-in and zoom-out gestures. In this way, we
can conclude that TSM performs better for gestures that rely more on temporal information,
while TSN achieves good for static hand gestures.

Figure 12. Confusion matrices of TSM and TSN are estimated by excluding the repetitive classes of
open twice and double-clicking.

6. Conclusions

In this paper, we proposed an alternative to the expensive dense optical flow estima-
tion used in the multimodal approaches for hand gesture recognition (HGR). We based
our proposal on a combination of RGB frames with hand segmentation masks. To this
end, we employed a light-weight semantic segmentation method (FASSD-Net) to boost
the accuracy of two real-time HGR methods: Temporal Segment Networks (TSN) and
Temporal Shift Modules (TSM). We demonstrated the efficiency of RGB-S modality over
RGB-OF and RGB with extensive experimental tests. Furthermore, we analyze both HGR
methods’ results, showing that TSM is better at recognizing gestures that rely on temporal
information, while TSN stands out on static gestures. As future work, we plan to combine
TSM and TSN in a single architecture to recognize both types of hand gestures in real-time.

Author Contributions: Conceptualization, G.B.-G., J.O.-M., and G.S.-P.; Investigation, G.B.-G., and
L.P.-T.; Data curation, L.C.C.-M., R.T.-M., and J.O.-M.; Software, G.B.-G., L.C.C.-M., and R.T.-M.;
Supervision, G.S.-P., and L.J.G.V.; Writing—original draft preparation, G.B.-G., and L.P.-T.; Writing—
review and editing, G.B.-G., L.P.-T., L.C.C.-M., and R.T.-M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: github.com/GibranBenitez/IPN-hand.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leo, M.; Medioni, G.; Trivedi, M.; Kanade, T.; Farinella, G.M. Computer vision for assistive technologies. Comput. Vis. Image

Underst. 2017, 154, 1–15. [CrossRef]
2. Berg, L.P.; Vance, J.M. Industry use of virtual reality in product design and manufacturing: A survey. Virtual Real. 2017, 21, 1–17.

[CrossRef]
3. Rautaray, S.S.; Agrawal, A. Vision based hand gesture recognition for human computer interaction: A survey. Artif. Intell. Rev.

2015, 43, 1–54. [CrossRef]
4. Pickering, C.A.; Burnham, K.J.; Richardson, M.J. A research study of hand gesture recognition technologies and applications for

human vehicle interaction. In Proceedings of the 2007 3rd Institution of Engineering and Technology Conference on Automotive
Electronics, Warwick, UK, 28–29 June 2007; pp. 1–15.

https://gibranbenitez.github.io/IPN_Hand/
http://doi.org/10.1016/j.cviu.2016.09.001
http://dx.doi.org/10.1007/s10055-016-0293-9
http://dx.doi.org/10.1007/s10462-012-9356-9

Sensors 2021, 21, 356 15 of 16

5. Parada-Loira, F.; González-Agulla, E.; Alba-Castro, J.L. Hand gestures to control infotainment equipment in cars. In Proceedings
of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 1–6.

6. Zengeler, N.; Kopinski, T.; Handmann, U. Hand gesture recognition in automotive human–machine interaction using depth
cameras. Sensors 2019, 19, 59. [CrossRef] [PubMed]

7. Asadi-Aghbolaghi, M.; Clapes, A.; Bellantonio, M.; Escalante, H.J.; Ponce-López, V.; Baró, X.; Guyon, I.; Kasaei, S.; Escalera, S. A
survey on deep learning based approaches for action and gesture recognition in image sequences. In Proceedings of the 12th
IEEE International Conference on Automatic Face & Gesture Recognition (FG), Washington, DC, USA, 30 May–3 June 2017;
pp. 476–483.

8. Asadi-Aghbolaghi, M.; Clapés, A.; Bellantonio, M.; Escalante, H.J.; Ponce-López, V.; Baró, X.; Guyon, I.; Kasaei, S.; Escalera, S.
Deep learning for action and gesture recognition in image sequences: A survey. In Gesture Recognition; Springer: Cham,
Switzerland 2017; pp. 539–578.

9. Molchanov, P.; Yang, X.; Gupta, S.; Kim, K.; Tyree, S.; Kautz, J. Online detection and classification of dynamic hand gestures with
recurrent 3d convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4207–4215.

10. Miao, Q.; Li, Y.; Ouyang, W.; Ma, Z.; Xu, X.; Shi, W.; Cao, X. Multimodal gesture recognition based on the resc3d network.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3047–3055.

11. Hu, Z.; Hu, Y.; Liu, J.; Wu, B.; Han, D.; Kurfess, T. 3D separable convolutional neural network for dynamic hand gesture
recognition. Neurocomputing 2018, 318, 151–161. [CrossRef]

12. Narayana, P.; Beveridge, R.; Draper, B.A. Gesture recognition: Focus on the hands. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 5235–5244.

13. Köpüklü, O.; Gunduz, A.; Kose, N.; Rigoll, G. Online Dynamic Hand Gesture Recognition Including Efficiency Analysis.
IEEE Trans. Biom. Behav. Identity Sci. 2020, 2, 85–97. [CrossRef]

14. Molchanov, P.; Gupta, S.; Kim, K.; Pulli, K. Multi-sensor system for driver’s hand-gesture recognition. In Proceedings of the 11th
IEEE International Conference on Automatic Face & Gesture Recognition (FG), Ljubljana, Slovenia, 4–8 May 2015; pp. 1–8.

15. Kopuklu, O.; Kose, N.; Rigoll, G. Motion Fused Frames: Data Level Fusion Strategy for Hand Gesture Recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June
2018; pp. 2184–21848.

16. Rosas-Arias, L.; Benitez-Garcia, G.; Portillo-Portillo, J.; Sanchez-Perez, G.; Yanai, K. Fast and Accurate Real-Time Semantic
Segmentation with Dilated Asymmetric Convolutions. In Proceedings of the 25th International Conference on Pattern Recognition,
ICPR 2020, Milan, Italy, 10–15 January 2021; pp. 1–8.

17. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; Van Gool, L. Temporal segment networks: Towards good practices for
deep action recognition. In European Conference on Computer Vision (ECCV); Springer: Cham, Switzerland, 2016; pp. 20–36.

18. Lin, J.; Gan, C.; Han, S. TSM: Temporal shift module for efficient video understanding. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 7083–7093.

19. Ranjan, A.; Black, M.J. Optical flow estimation using a spatial pyramid network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4161–4170.

20. Benitez-Garcia, G.; Olivares-Mercado, J.; Sanchez-Perez, G.; Yanai, K. IPN Hand: A Video Dataset and Benchmark for Real-Time
Continuous Hand Gesture Recognition. In Proceedings of the 25th International Conference on Pattern Recognition, ICPR 2020,
Milan, Italy, 10–15 January 2021; pp. 1–8.

21. Pisharady, P.K.; Saerbeck, M. Recent methods and databases in vision-based hand gesture recognition: A review. Comput. Vis.
Image Underst. 2015, 141, 152–165. [CrossRef]

22. Ohn-Bar, E.; Trivedi, M.M. Hand gesture recognition in real time for automotive interfaces: A multimodal vision-based approach
and evaluations. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2368–2377. [CrossRef]

23. Joshi, A.; Monnier, C.; Betke, M.; Sclaroff, S. Comparing random forest approaches to segmenting and classifying gestures. Image
Vis. Comput. 2017, 58, 86–95. [CrossRef]

24. Borghi, G.; Frigieri, E.; Vezzani, R.; Cucchiara, R. Hands on the wheel: a Dataset for Driver Hand Detection and Tracking.
In Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG), Xi’an, China, 15–19
May 2018; pp. 564–570.

25. Contreras Alejo, D.A.; Gallegos Funes, F.J. Recognition of a Single Dynamic Gesture with the Segmentation Technique HS-ab and
Principle Components Analysis (PCA). Entropy 2019, 21, 1114. [CrossRef]

26. D’Eusanio, A.; Simoni, A.; Pini, S.; Borghi, G.; Vezzani, R.; Cucchiara, R. Multimodal hand gesture classification for the human–car
interaction. Informatics 2020, 7, 31. [CrossRef]

27. Hakim, N.L.; Shih, T.K.; Kasthuri Arachchi, S.P.; Aditya, W.; Chen, Y.C.; Lin, C.Y. Dynamic Hand Gesture Recognition Using
3DCNN and LSTM with FSM Context-Aware Model. Sensors 2019, 19, 5429. [CrossRef] [PubMed]

28. Jaramillo-Yánez, A.; Benalcázar, M.E.; Mena-Maldonado, E. Real-Time Hand Gesture Recognition Using Surface Electromyogra-
phy and Machine Learning: A Systematic Literature Review. Sensors 2020, 20, 2467. [CrossRef] [PubMed]

29. Chen, L.; Fu, J.; Wu, Y.; Li, H.; Zheng, B. Hand gesture recognition using compact CNN via surface electromyography signals.
Sensors 2020, 20, 672. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s19010059
http://www.ncbi.nlm.nih.gov/pubmed/30586882
http://dx.doi.org/10.1016/j.neucom.2018.08.042
http://dx.doi.org/10.1109/TBIOM.2020.2968216
http://dx.doi.org/10.1016/j.cviu.2015.08.004
http://dx.doi.org/10.1109/TITS.2014.2337331
http://dx.doi.org/10.1016/j.imavis.2016.06.001
http://dx.doi.org/10.3390/e21111114
http://dx.doi.org/10.3390/informatics7030031
http://dx.doi.org/10.3390/s19245429
http://www.ncbi.nlm.nih.gov/pubmed/31835404
http://dx.doi.org/10.3390/s20092467
http://www.ncbi.nlm.nih.gov/pubmed/32349232
http://dx.doi.org/10.3390/s20030672
http://www.ncbi.nlm.nih.gov/pubmed/31991849

Sensors 2021, 21, 356 16 of 16

30. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-scale Video Classification with Convolutional
Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH,
USA, 23–28 June 2014; pp. 1725–1732.

31. Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 8–13 December 2014; pp. 568–576.

32. Wan, J.; Escalera, S.; Anbarjafari, G.; Escalante, H.J.; Baró, X.; Guyon, I.; Madadi, M.; Allik, J.; Gorbova, J.; Lin, C.; et al. Results
and Analysis of ChaLearn LAP Multi-modal Isolated and Continuous Gesture Recognition, and Real Versus Fake Expressed
Emotions Challenges. In Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW), Venice,
Italy, 22–29 October 2017; pp. 3189–3197.

33. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 4489–4497.

34. Chao, P.; Kao, C.Y.; Ruan, Y.S.; Huang, C.H.; Lin, Y.L. HarDNet: A Low Memory Traffic Network. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.

35. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

37. Wan, J.; Zhao, Y.; Zhou, S.; Guyon, I.; Escalera, S.; Li, S.Z. Chalearn looking at people rgb-d isolated and continuous datasets for
gesture recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
Las Vegas, NV, USA, 26 June–1 July 2016; pp. 761–769.

38. Zhang, Y.; Cao, C.; Cheng, J.; Lu, H. Egogesture: A New Dataset and Benchmark for Egocentric Hand Gesture Recognition. IEEE
Trans. Multimed. 2018, 20, 1038–1050. [CrossRef]

39. Zimmermann, C.; Brox, T. Learning to estimate 3d hand pose from single rgb images. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4903–4911.

40. Niklaus, S. A Reimplementation of SPyNet Using PyTorch. 2018. Available online: https://github.com/sniklaus/pytorch-spynet
(accessed on 29 November 2020).

41. Baker, S.; Scharstein, D.; Lewis, J.P.; Roth, S.; Black, M.J.; Szeliski, R. A Database and Evaluation Methodology for Optical Flow.
Int. J. Comput. Vis. 2011, 92, 1–31. [CrossRef]

42. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [CrossRef]

43. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803.

http://dx.doi.org/10.1109/TMM.2018.2808769
https://github.com/sniklaus/pytorch-spynet
http://dx.doi.org/10.1007/s11263-010-0390-2
http://dx.doi.org/10.1007/s11263-015-0816-y

	Introduction
	Related Work
	Proposed Method
	FASSD-Net for Real-Time Semantic Segmentation
	Temporal Segment Networks (TSN)
	Temporal Shift Module (TSM)

	Experimental Results
	Dataset
	Implementation Details
	Evaluation Metrics
	Results with Different Number of Segments
	Results Using the Complete Dataset
	Results Using Action Classes of the Dataset

	Discussion
	Conclusions
	References

