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Abstract— Recent works of real-time semantic segmentation,
remove or make use of light decoders from dense deep neural
networks to achieve fast inference speed. This strategy helps to
achieve real-time performance; however, the accuracy is signif-
icantly compromised in comparison to non-real-time methods.
In this paper, we introduce two key modules aimed to design a
high-performance decoder for real-time semantic segmentation,
which also reduces the accuracy gap between real-time and non-
real-time networks. The first module, Dilated Asymmetric Pyra-
midal Fusion (DAPF), is designed to increase the receptive field on
the top of the last stage of the encoder, obtaining richer contextual
features. The second module, Multi-resolution Dilated Asym-
metric (MDA) module, fuses and refines detail and contextual
information from multi-scale feature maps coming from early and
deeper stages of the network. Both modules are designed to keep a
low computational complexity by using asymmetric convolutions.
With these modules, we propose a network entitled “FASSD-
Net,” which is based on a light-weight CNN backbone. Running
on a single Nvidia GTX 1080Ti, our model reaches 77.5% and
69.3% of mIoU, at 41 and 80 FPS on the Cityscapes and
CamVid datasets, respectively. We present an extensive analysis
of the accuracy-speed tradeoffs of three FASSD-Net variations on
different embedded systems, demonstrating that a light version
of our network can run on the low-power consumption Jetson
Xavier NX, at 32 FPS reaching 74% of mIoU with full resolution
(1024 × 2048). The source code and pre-trained models are
available at github.com/GibranBenitez/FASSD-Net.

Index Terms— Semantic segmentation, fully convolutional
networks, spatial pyramid pooling, HarDNet, embedded systems,
Jetson Xavier NX.

I. INTRODUCTION

SEMANTIC segmentation is considered as a fundamental
task in computer vision [1]–[3]. It aims to assign semantic

class labels to each pixel present in a given input image.
In recent years, due to the development of new deep learning
techniques, semantic segmentation has been widely applied
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to a number of challenging fields, including: autonomous
driving [4]–[8], robot sensing [9], medical imaging [10],
augmented reality [11] and video surveillance [12], to name a
few. Some of these applications require the inference speed
to be real-time for making important decisions or actions,
as a part of more complex systems. In particular, several
applications in the field of intelligent transportation systems
[8], [13]–[15] require keeping a balance between high accu-
racy prediction and real-time performance, such as processing
urban scene images from autonomous or assisted driving
cars [3], [16], [17]. However, speed and accuracy are two
factors that seemingly contradict each other, making real-time
semantic segmentation a challenging task, especially when
the implementation of the system is carried on an embedded
system [2], [18]. In this case, factors such as low-power
consumption and memory usage become crucial [19]–[21].

In terms of accuracy, some state-of-the-art (SOTA) net-
works for real-time semantic segmentation [16], [22], [23] use
U-shape-like architectures [10] to achieve high performance
by recovering hierarchical features from previous stages of
the network. Nevertheless, their precision is still significantly
lower than non-real-time semantic segmentation networks,
which instead use deeper classification architectures as a
backbone, such as ResNet-101 [24]. Moreover, a common way
to boost the accuracy of these networks is by leveraging the
use of dilated (atrous) convolutions in the last blocks of the
network. In this way, the receptive field of the convolution
kernel is enlarged [25]. However, the networks designed to
exploit this property require a considerable amount of floating-
point operations, such as the Atrous Spatial Pyramid Pooling
module (ASPP) from DeepLabV3+ [26]. On top of that,
the ASPP module heavily relies on dilated convolutions,
which by themselves are slow to compute due to framework
optimization constraints [23].

The slow-down caused by the use of dilated convolutions
can be alleviated by implementing convolution factoriza-
tion [19]. Therefore, in this paper, we build upon this solu-
tion to design two modules for achieving real-time semantic
segmentation with a boost of accuracy. In short, our general
approach aims to exploit contextual information in multiple
stages of a U-shape architecture. Specifically, we name the
two modules: Dilated Asymmetric Pyramidal Fusion (DAPF)
and Multi-resolution Dilated Asymmetric (MDA).

In order to increase the kernel receptive field and keep low
computational complexity, we carefully employ 3 × 3 dilated
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convolutions factorized into two consecutive 1D dilated convo-
lutions. From hereafter, we refer to this type of convolutions as
dilated asymmetric convolutions, due to the asymmetric nature
of the convolution kernel and the dilation implementation.

Our DAPF module is designed to significantly increase
the receptive field of the last stage of the encoder network,
obtaining richer contextual features. We follow a pyramidal
scheme similar to the ASPP module [26], but all 3 ×3 dilated
convolutions are replaced with dilated asymmetric convolu-
tions. Our design, allows us to adjust the number of pyramidal
feature maps of DAPF according to the number of input feature
maps, which further reduces the computational complexity.

Similarly, our MDA module, fuses multi-resolution feature
maps coming from previous encoder and decoder levels of the
network. In this module, feature maps are processed simultane-
ously by two parallel branches: the asymmetric branch and the
non-asymmetric branch. The asymmetric convolutional branch
exploits the contextual information of the input feature maps,
whereas the non-asymmetric branch focuses on recovering
details. This design allows a simultaneous refinement of detail
and contextual information in multiple stages of the decoder.

By combining the DAPF and MDA modules, we design
a novel network entitled FASSD-Net, which effectively
increases the semantic segmentation accuracy with a rela-
tively low computational cost. FASSD-Net bridges the accu-
racy gap between existing real-time (around 70% mIoU on
Cityscapes benchmark) [2], [19], [23], [27]–[29] and non-
real-time networks (about 80% mIoU) [1], [26], [30]–[33].
Moreover, we present two light variations that provide a
balanced trade-off between accuracy and inference speed. Our
fastest variation can even run real-time at full resolution on
low-power consumption embedded systems, such as Jetson
Xavier NX (< 15W ) [34].

Our main contributions are summarized as follows:
• We introduce DAPF, an efficient plug-and-play spatial

pyramidal fusion module inspired by ASPP [26], which
demands far less computational complexity, and enables
its use for real-time applications.

• We introduce the MDA module, which allows better
learning from two different stages of the network, refin-
ing spatial and contextual information simultaneously by
keeping low computation cost.

• We propose a FASSD-Net and two light variations which
obtain SOTA mIoU results on the Cityscapes and CamVid
benchmarks for the task of real-time semantic segmen-
tation. Moreover, FASSD-Net is comparable to non-real-
time methods such as DeepLabV3+ [26] and PSPNet [30]
in terms of accuracy, while being about 40× faster.

This work is an extension of the conference paper presented
at ICPR2020 [35], which introduces our FASSD-Net approach
(Section III). The novel contributions of this paper include:

• Experimental analysis with more benchmark datasets,
including Cityscapes [36] and CamVid [37] (Section IV).

• Additional experiments to demonstrate the performance
of our two modules with different backbone networks,
including MobileNetV2 [38], ShuffleNetV2 [39], and
ResNet-18 [24] (Section IV-C).

• An extensive evaluation of the accuracy-speed trade-
offs of our FASSD-Net variations on the NVIDIA
Jetson [34] family of GPU-powered embedded systems
(Section IV-E).

• An updated SOTA comparisons with recent
methods for real-time semantic segmentation
(Sections IV-F and IV-H).

II. RELATED WORK

Models such as PSPNet [30] and DeepLabV3+ [26] exploit
contextual information by processing the same set of feature
maps. PSPNet [30] downsamples the feature maps at four
different rates, and applies a series of convolutions on them to
finally perform a fusion process. Likewise, DeepLabV3+ [26]
processes the feature maps by applying atrous convolutions
at different rates. These models have achieved top results
on several segmentation benchmarks by leveraging the use
of multi-scale information in a pyramidal fashion. However,
even on modern GPUs, the required computational resources
for these methods are considerably expensive, making them
unfeasible for real-time applications [28]. In contrast, our
proposed FASSD-Net handles a similar pyramidal strategy as
proposed in DeepLabV3+ [26], introducing dilated asymmet-
ric convolutions, which enables real-time applications.

In addition, fusion strategies for multi-resolution feature
maps have been used in recent works such as HarDNet [22],
SwiftNet [23] and FasterSeg [27]. These networks either
concatenate or add two sets of feature maps and further process
them with a single convolution. This straightforward fusion
strategy requires a small amount of computation, but do not
exploit contextual information. In contrast, our MDA module
concatenates two sets of feature maps, processing them by two
parallel branches simultaneously, which refines features rich in
detailed information and context.

On the other hand, techniques for reducing the com-
putational complexity of the networks such as depthwise
separable convolutions [38]–[41], zoomed convolutions [27],
or convolution factorization [19], [28], [29] have been pro-
posed and applied to the task of real-time semantic seg-
mentation. Networks that employ these techniques such as
Fast-SCNN [41], ERFNet [28], and FasterSeg [27] achieve
real-time performance, usually at the cost of significantly
lower accuracy compared to non-real-time methods. Similarly,
our three network proposals rely on factorized (asymmetric)
convolutions used in the DAPF and MDA modules. How-
ever, our proposed networks outperform Fast-SCNN [41],
ERFNet [28] and FasterSeg [27] in terms of accuracy.

Additional methods for accelerating neural networks include
filtering or channel pruning [42], [43], network distilla-
tion [44], [45], Network Architecture Search (NAS) [27], [46],
and Neural Network Quantization [47]. Such methods mainly
reduce the number of parameters and weight of the model or
transfer knowledge from a cumbersome network to a compact
model. However, most of them, either utilize sophisticated
methodologies, require a considerable amount of memory,
or cannot be directly applied to more elaborated network
architectures [48]. Specifically, FasterSeg [27] and CAS [46]
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Fig. 1. Block diagram of the proposed network. “s” indicates the downsampling rate of the feature maps with respect to the original input image (e.g., s=32
indicates output feature maps of size 32 × 64). The colors of each block indicate its type: standard convolution, HarDBlock, MDA and DAPF.

obtain SOTA inference speed by utilizing NAS techniques.
By comparison, our proposed models are designed manually
and still, outperform these NAS networks in accuracy and
speed performance.

Networks such as ESPNetv2 [49], ESNet [49], and
LEDNet [50] employ lightweight pyramidal multi-resolution
strategies similar to our DAPF module. More specifically,
LEDNet [50] and ESNet [29] incorporate asymmetric convo-
lutions in their core modules. However, they heavily rely on it,
which reduces the inference speed performance, compared to
the highly optimized standard convolutions [23]. Contrary to
these methods, our DAPF and MDA modules utilize asymmet-
ric convolutions only if dilation is applied concurrently, allevi-
ating the reduction of inference speed performance caused by
the atrous convolutions [19]. When compared to our proposals,
LEDNet [50] and ESNet [29] are slower and less accurate.

III. PROPOSED METHOD

Most of the existing SOTA methods for semantic seg-
mentation are built on top of high-performance baselines for
image classification such as ResNet, WiderResNet, or Xcep-
tion [1], [26], [31]–[33]. Following this trend, we propose
FASSD-Net (Fast and Accurate Semantic Segmentation with
Dilated asymmetric convolutions) by extending the work of
Chao et al. [22] with our DAPF and the MDA modules. The
proposed network structure is shown in Figure 1. In the
figure, the stem convolution block consists of four consecutive
convolution layers. The core element of all encoder and
decoder blocks is the HarDBlock (Harmonic Dense Block),
proposed in HarDNet [22]. Our proposed DAPF is placed at
the end of the encoder, while MDA modules connect each
decoder block with its corresponding encoder, in a U-shape
fashion. Finally, the last block of the network consists of
a single 1 × 1 convolution for making the final prediction.
Bilinear upsampling is used to reestablish the original input
size (1024 × 2048). Table I shows the detailed architecture of
FASSD-Net, including the output and number of channels for
each element.

A. Network Overview

HarDNet (Harmonic DenseNet) [22], is a recent SOTA
network inspired by DenseNet (Densely Connected

TABLE I

FASSD-NET ARCHITECTURE. L DENOTES THE NUMBER OF
CONVOLUTION LAYERS IN THE HARDBLOCK

Network) [51]. Its core component, the HarDBlock (Harmonic
Dense Block), is specifically designed to address the memory
traffic problems and the density of computations of the
DenseBlock. In particular, the HarDBlock reduces most of
the layer connections from a DenseBlock, which reduces
concatenation cost; moreover, the input/output channel ratio
is balanced by increasing the channel width of a layer
according to its connections. As shown in Figure 2, the layer
connections are significantly reduced, while the layer width
is based on the concatenation size, being the last layer of
the block the largest in terms of the number of channels.
Compared to ResNet [24] and DenseNet [51], HarDNet
achieves comparable accuracy with significantly lower GPU
runtime for classification tasks.
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Fig. 2. Concatenation scheme comparison between the DenseBlock and the
HarDBlock. The HarDBlock is named after the harmonic waves pattern that
describes its concatenation scheme. “||” denotes concatenation process.

The HarDBlock proposed by Chao et al. [22] is based on
the observation that, when the density of computation is
low, DRAM (dynamic random-access memory) traffic can
influence inference time more substantially than the model
size and the number of operations. In detail, the density of
computations (MoC) can be expressed as:

MoC = #Multiply-Accumulate operations (MACs)

Convolutional Input/Output (CIO)
, (1)

where CIO is an approximation of the DRAM traffic propor-
tional to the real DRAM traffic measurement. Likewise, CIO
is mathematically defined by:

CIO =
∑

l

(c(l)
in × h(l)

in × w
(l)
in + c(l)

out × h(l)
out × w

(l)
out), (2)

where c, w, and h are, respectively, the number of channels,
width and height of the feature maps for a given convolution
layer l. Given that, the HarDBlock follows a concatenation
scheme aimed to improve the throughput of the feature maps
in the network, avoiding unnecessary DRAM accesses. Specif-
ically, the layer k connects to layer k − 2n if 2n divides k, for
all non-negative n that satisfies k − 2n ≥ 0, being layer 0 the
input layer. In this way, layers from 1 through 2n − 1 can be
flushed from the memory once layer 2n is processed.

As a baseline, we use the FC-HarDNet-70 model [22],
which is the implementation of HarDNet for the task of
semantic segmentation. FC-HarDNet-70 is a U-shaped archi-
tecture [10] with five encoder blocks and four decoder blocks
(all of them HarDBlocks). The convolution layers in the
last encoder stage of FC-HarDNet process a high number
of feature maps with 1/64 input size resolution, which is
essential for classification tasks. However, we believe that this
is not always the case for semantic segmentation tasks. For
example, even a high-resolution 1024 × 2048 image that has
been processed and downsampled to 1/64 of its original size,
becomes a tensor at the resolution of 16 × 32, which may
completely lose track of small objects, heavily compromising
the segmentation accuracy. Therefore, in our FASSD-Net, the
last encoder block and the first decoder block of FC-HarDNet
are replaced with our DAPF module, so that the smallest
feature maps processed by our network are 1/32 of the
input size. Similarly, the FC-HarDNet multi-resolution fusion
scheme is substituted by our MDA module, as shown in
Figure 1.

Fig. 3. ASPP and DAPF modules comparison. “C” denotes the number of
feature maps.

B. Dilated Asymmetric Pyramidal Fusion Module

The original ASPP module [26] heavily relies on stan-
dard atrous convolutions and produces a fixed number of
feature maps Q in each of its five pyramidal branches,
as shown in Figure 3. Pyramidal branches consist of: 1 ×
Conv 1 × 1, 3 × atrous Conv 3 × 3 r = (12, 24, 36) and
1 × Pooling + Conv 1 × 1, where r is the dilation rate of the
convolution kernel.

Inspired by ASPP, we propose the DAPF module aimed
to reduce its computational burden, which consists of two
key elements: (1) 3 × 3 atrous convolutions are factorized
into two consecutive 1D atrous convolutions, specifically, a
3 × 1 convolution followed by a 1 × 3 convolution; (2) the
number of feature maps generated by each pyramidal branch,
is not fixed. Instead, it is defined by K × 1

α , where K is the
number of input feature maps of the module, and α serves as
the compression factor. Note that α can be adjusted according
to the available computational budget. In our implementation,
we set α = 2. Figure 3 illustrates the differences between
DAPF and the ASPP modules.

Formally, For a given set of input feature maps X ∈
R

C×H×W , the DAPF module can be defined as:
Y = F1,1

(
F1,1(X)||A3,12(X)||A3,24(X)||A3,36(X)

)
, (3)

where Y represents the output feature maps, F1,1 is a 1×1 con-
volution, and Ak,r denotes the asymmetric dilated convolution
branch defined by F(1×k),r (F(k×1),r (X)), where F(k×1),r and
F(1×k),r are the two consecutive convolutions with asymmetric
kernel size k and dilation rate r .
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Fig. 4. MDA module. “C” denotes the number of output feature maps, “||”
denotes concatenation and “D” indicates dilated convolution.

The major contributing factor for reducing the computa-
tional burden in our DAPF module is the use of asymmetric
convolutions. For instance, in the pyramidal branches, for
each standard 2D convolution, we would have to perform
K × d × d × F operations, where K is the number of input
channels (feature maps), d is the kernel size, and F is the
number of output channels. On the other hand, following our
asymmetric strategy with α = 2, we perform (K ×d × 1

2 K )+
( 1

2 K ×d× 1
2 K ) operations. For a 3×3 kernel, this factorization

strategy only requires 1
2 of the original number of operations,

thus saving 50% of the needed computations and parameters
in comparison to its non-asymmetric convolution equivalent.
Moreover, factorization can also improve the learning capacity
of the module as a result of the intermediate activation layers
used between the two 1D convolutions [28].

C. Multi-Resolution Dilated Asymmetric Module

We design our MDA module to simultaneously exploit con-
textual information and recover spatial information. As shown
in Figure 4, the two multi-resolution feature maps of sizes
K and Q are concatenated and fused together with a 1 ×
1 convolution. This convolution reduces the number of feature
maps by half to reduce the number of computations in the
module and subsequent stages.

After an additional 3×3 convolution that refines the initially
fused feature maps, two parallel branches process the output
feature maps. The asymmetric convolutional branch A3,r (X)
aims to exploit the contextual information present in the
feature maps by leveraging the use of dilated convolutions.
In contrast, the non-asymmetric branch F(3,3)(X) focuses on
refining the details. The resulting feature maps are concate-
nated and processed by a 1 × 1 convolution to match the

TABLE II

ABLATION STUDY OF OUR PROPOSED MODULES ON THE CITYSCAPES
VALIDATION SET. RED, GREEN, BLUE REPRESENT THE TOP-3 RESULTS

number of feature maps of the first 1 ×1 convolution. Finally,
feature maps of both 1×1 convolutions are summed up through
a residual connection, helping to improve the gradient flow.

The dilation rate r of the asymmetric branch gradually
decreases in every MDA block from the deepest to the
shallowest stage of the decoder (depicted in Figure 1 as the
longest arrow at the bottom). Specifically, the dilation rates
are r = 8 for MDA 1, r = 4 for MDA 2, and r = 2 for MDA
3. The intuition behind this idea is that inner feature maps of
the network are richer in contextual information and can be
leveraged by atrous convolutions with larger dilation rates.

IV. EXPERIMENTAL RESULTS

We evaluate our proposed network architectures using two
benchmark datasets: Cityscapes [36] and CamVid [37]. The
Cityscapes dataset [36] consists of 5,000 finely annotated
1024 × 2048 images: 2,975 for training, 1,525 for testing,
and 500 images for validation. Additionally, 19,998 images
with coarse annotations are also provided. On the other hand,
the CamVid dataset [37] is a significantly smaller dataset with
701 720 × 960 images, including 367 for training, 101 for
validation, and 233 for testing. For a fair comparison, we only
use the fine annotated images of Cityscapes, and following the
common practice of CamVid, we incorporate the value subset
into train because it is too small and too easy to be useful
for validation. We explicitly mention when using multi-scale
evaluation in the final results. The performance is mainly
measured in mean intersection-over-union accuracy (mIoU)
and frames per second (FPS). Besides, we report the number
of parameters and computational complexity in GFLOPs using
the full resolution size of Cityscapes.

A. Implementation Details

We use PyTorch 1.2 with CUDA 10.2 for all experiments.
The same training setting is used for all models, where Sto-
chastic Gradient Descent (SGD) with weight-decay 5 × 10−4

and momentum 0.9 is used as the optimizer. We employ the
“poly” learning rate strategy lr = ini tial_lr × ( iter

total_iter )0.9,
and an initial learning rate of 0.02. Cross-entropy loss is
computed following the online bootstrapping strategy [52].
Data augmentation consists of random horizontal flip, random
scale in the range [0.5, 2], and random cropping. We train
with 1024 × 1024, and 512 × 512 crop size, for Cityscapes
and for CamVid, respectively. We trained all models for
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TABLE III

PER-CLASS MIOU SCORE ABLATION RESULTS ON THE CITYSCAPES VALIDATION SET

90000 iterations with batch size 16. Finally, we extend the
same training protocol for 30000 more iterations, setting the
batch size to 24 and the learning rate to 0.001.

All the encoder blocks are pre-trained on the ImageNet
dataset [53], and the inference time is measured on an Intel
Core i7-9700K desktop with a single NVIDIA GTX 1080Ti
GPU, if not specified otherwise. For all experiments, the speed
is calculated from the average FPS rate of 10, 000 iterations
with 1024 × 2048 × 3 images.

B. Ablation Study

In this section, we show the performance comparison
between our proposed DAPF and the DeepLabV3+’s ASPP
module [26]. We also evaluate the effectiveness of our MDA
module and its combination with DAPF and ASPP. Table II
summarizes the corresponding results. Baseline denotes a
modified FC-HarDNet-70, where the last encoder and the
first decoder blocks are removed, as previously described in
Section III-A. Note that, for a fair comparison, all methods
shown in Table II are trained without further fine-tuning.

Our DAPF module outperforms DeepLabV3+’s ASPP in all
four metrics (GFLOPs, Parameters, FPS and mIoU). In addi-
tion, the increase of parameters (�p) by DAPF from the
Baseline is significantly lower than the ASPP module (0.46M
vs 1.95M). In resume, our module is more than four times
lighter than ASPP, and presents a precision increase of 1.9%.
It can be observed that the addition of our MDA strategy
outperforms the mIoU of the baseline network to almost the
same degree as DAPF. Likewise, our MDA strategy consumes
roughly the same number of parameters. However, since MDA
is used in three different levels of the decoder, the FPS drop
becomes evident compared to DAPF.

Table III shows per-class mIoU results of our proposed
modules compared with the baseline. As expected, DAPF
improves the accuracy of classes related to contextual infor-
mation, such as wall and rider. Accordingly, MDA helps to
segment small objects of the scene, such as traffic sign (t.sign)
and motorbike (mbik), some of the smallest objects on the
cityscapes validation set. On the other hand, the combination
of our two proposals achieves the best mIoU accuracy in gen-
eral. Specifically, it outperforms the baseline and the SOTA
results of FC-HarDNet-70 [22] by 3% and 1.8%, respectively.
Additionally, the increase of parameters (�p) of our proposal
is less than 50% compared to the ASPP model. On top of
that, the total number of parameters is significantly lower than
those needed by FC-HArDNet-70 (2.85M vs 4.10M). Note that
Baseline + DAPF + MDA corresponds to our final model
called FASSD-Net, as shown in Figure 1.

TABLE IV

ABLATION STUDY OF HYPERPARAMETER α OF DAPF MODULE

TABLE V

EVALUATION OF OUR PROPOSED MODULES WITH DIFFERENT
BACKBONES ON THE CITYSCAPES VALIDATION SET

Finally, we evaluate the sensitivity of the DAPF module
on the hyperparameter alpha. Table IV shows the results of
our FASSD-Net with four different values. As mentioned in
Section III-B, alpha is meant to regulate the compression factor
of each pyramidal branch of DAPF. As we can see in Table IV,
if we increase the alpha value, the network runs faster at the
cost of accuracy. Thus, in our implementation, we set α = 2.

C. Evaluation With Different Backbones

To better evaluate the effectiveness of our proposed
modules, we replace the HarDNet backbone to different effi-
cient CNN architectures mainly designed for mobile applica-
tions. We implement MobileNetV2 [38], ShuffleNetV2 [39],
and ResNet-18 [24] following the FASSD-Net architecture,
described in Table I. So that, these architectures initially
designed for classification, have been redesigned for seman-
tic segmentation in a U-shape style with four encoder and
three decoder blocks, plus our DAPF and MDA modules.
We call these versions FASSD-Mobile, FASSD-Shuffle, and
FASSD-ResNet, respectively. For a fair comparison, we also
implement the baselines of each architecture with a simple
fusion block and without pyramidal pooling blocks, same as
the HarDNet baseline, described in Section III-A. We refer
to these implementations as U-MobileNetV2, U-ShuffleNetV2,
and U-ResNet-18. Table V shows the comparison results of
these implementations.
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Fig. 5. Qualitative results of the proposed networks. Regions of improvement are highlighted with yellow squares.

TABLE VI

PER-CLASS MIOU SCORE COMPARISON OF OUR PROPOSALS ON THE CITYSCAPES VALIDATION SET

As expected, all the backbone architectures significantly
increase precision when using our DAPF and MDA modules
(FASSD-Net versions). Particularly, U-MobileNetV2 increases
more than 4% of mIoU while keeping the number of parame-
ters closer to the baseline (U-MobileNetV2). From Table V we
can also see that the FASSD-Shuffle and FASSD-Mobile archi-
tectures have the lowest computational complexity with less
than 25 GFLOPs calculated from an input size of 1024×2048,
which can be useful for mobile applications. Note that the
inference speed of MobileNetV2 versions is surprisingly low
because of the optimization problems of depthwise separable
convolutions attributed to the PyTorch framework.1

D. Light Version of FASSD-Net

In addition to our network FASSD-Net, we introduce two
light versions designed to maintain a better tradeoff between
speed and accuracy. We call these networks: FASSD-Net-
L1 and FASSD-Net-L2. As shown in Table I, FASSD-Net-
L1 differs only in the first convolution layer, where the
convolution stride is increased from 2 to 3. Such modification,
preserves the same number of parameters of the network and
leads to a faster inference speed at the cost of a small drop in
accuracy. Specifically, it is 1.9× faster and 2.5% less accurate.
FASSD-Net-L2, on the other hand, is designed to be the fastest
among our three proposals. It adopts an additional convolution
stride of 2 in the second convolution layer of the stem block.
Moreover, all the HarDBlocks in the decoder are replaced by
conventional 3 × 3 convolution layers of 64 channels. Thus,
FASSD-Net-L2 is 3.2× faster than FASSD-Net with only a
4.7% drop in accuracy performance.

We report the results of per-class mIoU accuracy in
Table VI. Most significative improvements occur in the truck

1github.com/pytorch/pytorch/issues/18631

Fig. 6. Accuracy vs. input resolution of our proposals measured on the
Cityscapes validation set. The cyan and yellow lines represent the average
and the commonly accepted mIoU of real-time SOTA methods, respectively.

and bus classes with 6.9% and 5.4%, respectively. Similarly,
FASSD-Net-L1 and FASSD-Net-L2 also obtain better results
overall in these two classes compared to FC-HarDNet-70,
despite being less accurate models. Qualitative results of our
FASSD-Net versions are shown in Figure 5. As the quantitative
results suggest, the most significant improvements occur on
pixels belonging to large objects, such as trucks and buses.
Compared to FC-HarDNet-70, all three FASSD-Nets better
differentiate between car, bus, and truck classes. For a fair
comparison, we have conducted the evaluation of our final
models against FC-HarDNet-70 with its official weights from
its open-source implementation.2

E. Evaluation on GPU-Powered Embedded Systems

The NVIDIA Jetson family [34] is a group of GPU-powered
embedded devices with low power consumption designed by

2github.com/PingoLH/FCHarDNet
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Fig. 7. Inference speed vs. input resolution of our proposals on the embedded systems. (a) Jetson Xavier NX. (b) Jetson TX2. (c) Jetson Nano. The cyan
and yellow lines represent the real-time speed: 30 and 15 FPS, respectively.

TABLE VII

TECHNICAL SPECS OF THE NVIDIA JETSON EMBEDDED SYSTEMS

TABLE VIII

FASSD-NET’S SINGLE VS HALF PRECISION EVALUATION

NVIDIA Corporation. Relevant specs of the three devices
currently available on the market are listed in Table VII. These
single-board systems can cover a wide range of possible AI
applications based on requirements of computational complex-
ity, model size, as well as power consumption, and price
budget. Therefore, in this section, we present an extensive
analysis of our proposals implemented on these devices: Jetson
Nano, Jetson TX2, and Jetson Xavier NX.

We use JetPack 4.4 [54] (the official SDK for the Jetson
family) with PyTorch 1.4 for all experiments. The SDK already
incorporates TensorRT [55], an optimization tool for high
performance deep learning inference. It is worth noting that
this tool relies on the half-precision floating-point (fp16) as
an essential speed optimization. Accordingly, we test the
influence of half-precision vs. single-precision (fp32) on the
accuracy of our models. As shown in Table VIII, the mIoU
drop in half-precision is negligible. Specifically, the worst-case
scenario presents a 0.006% of error. Hence, we use NVIDIA’s
TensorRT [56] with half-precision for all results on the embed-
ded systems.

To precisely evaluate the accuracy-speed tradeoffs of our
FASSD-Net variations on the embedded systems, we first have
to test the degradation of the accuracy with respect to the input
size. Therefore, we evaluate ten different input sizes, from
256 × 512 to full resolution (1024 × 2048) on the Cityscapes
validation set. Figure 6 shows the results of our three models
concerning the input resolution. We can see that FASSD-Net

TABLE IX

COMPARISON WITH PREVIOUS WORKS ON THE JETSON TX2 SYSTEM

obtains better accuracy than the average SOTA results (73%)
with a minimum resolution of 576 × 1152, which represents
a downscale of more than three times the full resolution.
On the other hand, with an input size of 512 × 1024, our
three models achieve better results than the minimum accepted
mIoU, defined as 65% [20], [57].

Figure 7 shows the inference speed evaluation of our
proposals on the NVIDIA Jetson embedded devices. On the
new Jetson Xavier NX (Figure 7a), FASSD-Net-L2 surpasses
the real-time requirement with full resolution input, achieving
74.1% of mIoU on single-board with less than 15W of power
consumption. In the case of Jetson TX2 (Figure 7b), the most
efficient result is obtained with a resolution of 704 × 1408,
almost reaching real-time performance with 71% of mIoU.
Similarly, on the Jetson Nano (Figure 7c), with an input size
of 512 × 1024, FASSD-Net-L1 and FASSD-Net-L2 can run
at 15 and 29 fps, respectively. Results considered outstand-
ing for a semantic segmentation model that can run on a
GPU-powered embedded device with only 128 CUDA cores.

Finally, in Table IX, we show the comparison of our network
proposals against other methods for semantic segmentation
implemented on the Jetson TX2. Our proposed FASSD-Net
is more than 2× faster than the closest competitor in terms
of accuracy, ERFNet [28]. Concerning the inference speed,
FASSD-Net-L2 reaches 28.5 FPS, the best option covering the
accuracy-speed tradeoffs. Note that, on the new Jetson Xavier
NX, our approach can surpass the real-time requirement
(31.7 FPS) with a SOTA accuracy of 74.1% of mIoU.

F. Comparison With SOTA Real-Time Methods on the
Cityscapes Benchmark

Table X shows the overall comparison of our network
proposals versus other SOTA methods for real-time semantic
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TABLE X

COMPARISON WITH SOTA NETWORKS FOR REAL-TIME SEMANTIC SEGMENTATION ON THE CITYSCAPES BENCHMARK. CATEGORIZED BY SPEED
PERFORMANCE, FROM TOP TO BOTTOM: NON-REAL-TIME, FASTER REAL-TIME (>120FPS), FAST REAL-TIME (>60FPS),

AND REAL-TIME (>30FPS)

segmentation on the Cityscapes benchmark. The table is
divided into three categories, based on the inference speed
directly comparable to each of our three proposed net-
works. For fair comparisons under different GPU architectures,
we follow the same protocol as Orsic et al. [23] and let the
column FPS (norm.) provide a speed estimation of the model
running on a GTX 1080Ti GPU. The scaling factors are:
1.0 for GTX 1080Ti, 0.61 for Titan X (Maxwell), 1.03 for
Titan X (Pascal), and 1.12 for Titan XP.

Our main network, FASSD-Net, surpasses by a considerable
margin the mIoU score of all other methods for real-time
semantic segmentation, requiring 1.44× fewer parameters and
being 1.4% more accurate than the closest competitor FC-
HarDNet-70. A particular case is the LDN [58] approach,
which claims to achieve real-time performance with TensorRT
on a Titan XP GPU. However, with the official source code
running on a GTX 1080Ti GPU without TensorRT, it reaches
just 13.6 FPS.

Our second network, FASSD-Net-L1, resembles the
reported results of BiSeNet [3] in mIoU accuracy and FPS.
However, the speed of BiSeNet has been originally measured
on 768 × 1536 images on a Titan XP. For a fair com-
parison, and according to Zhuang et al. [62], we adjust its
speed to 37 FPS evaluated at 1024 × 2048 size on a GTX
1080Ti GPU. Therefore, resulting in our network being about
2.1× faster, 1.5% more accurate, and requiring 17.2× fewer
parameters.

Fig. 8. Qualitative comparison with SOTA networks for real-time semantic
segmentation on the Cityscapes validation set. Critical regions are highlighted
with yellow squares.

Similarly, FASSD-Net-L2 can be compared to
FasterSeg [27] and DF1-Seg-d8 [42], which were designed
and optimized by NAS methodologies. Both methods
utilize TensorRT acceleration [55] to increase their speed
performance. For a fair comparison, we let 1.65× be the
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Fig. 9. Example of common errors on classes wall and motorbike. The last two rows show the worst scenarios.

acceleration factor of TensorRT. This value is approximated
from works that present results with and without TensorRT,
such as FasterSeg [27]. Under these assumptions, our FASSD-
Net-L2 is faster than FasterSeg and DF1-Seg-d8, while being
1% and 1.7% more accurate, respectively. It is worth noting
that, due to the fast inference speed of our proposal, we also
present results using a multi-scale evaluation with four scales
(0.5, 0.75, 1, 1.25). So that, even with four consecutive
forward passes, FASSD-Net-L2 can surpass the real-time
requirement (with 33.2 FPS).

Figure 8 shows the qualitative results of our proposals ver-
sus other SOTA methods for real-time semantic segmentation
on the Cityscapes validation set. Note that these images are
zoomed-in from the original 1024×2048 size. Thus, it is clear
that our networks can segment small objects such as the person
and the pole light in the highlighted regions.

G. Analysis of Common Errors

From Table VI, we observed that FASSD-Net obtains the
highest score in 17 out of 19 classes, outperforming the current
SOTA model, FC-HarDNet-70. Wall and motorbike are the
two classes that present a deficit of 0.4 of mIoU; hence,
Figure 9 shows common and worst-case errors of both. As we
can see, failures appear on significantly small objects, usually
misrecognized as classes from the same category,3 wall as a
fence, and motorbike as a car. Thus, the mIoU of categories
construction and vehicle from FASSD-Net are higher than FC-
HarDNet-70 (93.3 & 94.1 versus 92.9 & 93.7, respectively).
We attribute the failure cases to the short presence of these two
classes on the dataset, affecting the quality of context features
learned from them. Besides, FC-HarDNet-70 presents a deeper
encoder architecture with five convolutional blocks instead of
four, as mentioned in Section III-A. The high efficiency of our
proposal lets the option to design a deep ensemble model from
different folds of training data as a straightforward solution to
the problem. Note that this technique is out of the scope of
this paper; details can be found in [63].

3see the original Cityscapes paper [36] for details on categories and classes.

TABLE XI

COMPARISON WITH SOTA NETWORKS ON THE CAMVID BENCHMARK

H. Comparison With SOTA Real-Time Methods on the
CamVid Benchmark

Finally, to illustrate the generality and effectiveness of our
proposal, Table XI shows the results of FASSD-Net versus
SOTA works evaluated on the CamVid benchmark. We can
see that our proposal is within the top-3 works of the best
efficiency and accuracy. Specifically, FASSD-Net is more
efficient than SwiftNet [23] (7% faster), but it is less accurate
(1.3% lower). On the other hand, our model is significantly
more accurate than the fastest methods DFANet [16], and
FC-HarDNet-70 [22]. These results demonstrate that
FASSD-Net is comparable with the SOTA methods trained
on small datasets, such as CamVid.

V. CONCLUSION

In this paper, we focus on reducing the accuracy gap
between real-time and non-real-time semantic segmentation
networks. For this purpose, we have proposed the DAPF
and MDA modules, which exploit the contextual information
in several stages of the decoder and boost the accuracy
performance of the baseline network. Using our two proposals
jointly with a highly efficient network, we have designed three
architecture variations that can be chosen depending on the
computational budget. Our main network, FASSD-Net, sets
the new state-of-the-art mIoU accuracy for real-time semantic
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segmentation on the Cityscapes at full resolution (1024 ×
2048). Moreover, our proposed FASSD-Net-L2 can even run
real-time on low-power consumption embedded systems such
as Jetson Xavier NX. As future work, we plan to analyze
channel pruning and knowledge distillation options to further
speed up our proposal. Besides, we would like to evaluate
it in different scenarios, such as indoor parsing and medical
images.
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